TRAFFIX
 TRAFFIC AND TRANSPORT PLANNERS

TRAFFIC SIG NAL FEASIBILTY REPO RT

Bunnings Tempe Traffic Signal Feasibility Report Inner West Counc il

Reference: 22.256r02v03
Date: August 2022
Suite 2.08, 50 Holt St
Surry Hills, NSW 2010

TRAFFIX

DOCUMENTVERIFICATION

| Job Number | 22.256 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Project | Bunnings Tempe Traffic Signal Feasibility Study | | | |
| Client | Inner West Council | | | |
| Revision | Date | Prepared By | Checked By | Signed |
| v03 | 24/08/2022 | Shenara
 Wanigasekera,
 Hayden
 Dimitrovski | Thomas Yang,
 Ben Liddell | |

TRAFFIX

EXEC UTIVE SUMMARY

Thistraffic signal fea sibility report hasbeen prepared for InnerWest Council in response to strong community feedback regarding the approved access arrangements for the Bunnings Tempe development at 750 Princes Highway, Tempe.

The approved development for the subject site consists of works for the construction of a Bunnings development being a hardware and building suppliesstore.

The applicant's traffic report undertook a SIDRA intersection analysis at the intersection of Princes Highway and the proposed access and Princes Highway and Smith Street. The study concluded that the results of the SIDRA assessment indicated satisfactory operational performance at the access and intersection, with both sites operating at a LOS A in the moming, evening and weekend scenarios with the development traffic incorporated.

The access a rrangements as detailed within the traffic report describes the following:
(2) Smith Street access: Ingress and egress for the carpark and ingress for delivery/service vehicles.
(2) Princes Highway: Right tum ingress and left tum egress for the capark and left tum egress for delivery/service vehicles.

Council has initiated this feasibility study in response to safety concems raised by the community under the approved traffic arrangements. Residents have raised concems on the forec asted vehicles travelling through Union Street, which acts as a link road to Unwins Bridge Road.

A signal warrant assessment has been underta ken aspart of the study, a nd it is considered that traffic signals are warranted at the Bunnings Tempe Princes Highway access driveway.

A Concept Plan was subsequently developed for the puposes of this feasibility study to show a signalised intersection layout that could be physically accommodated within the existing driveway with minimal changes to the intemal configuration of the Bunnings development. The Concept Plan depicts a signalised intersection layout that aims to contain all vehicle egress onto PrincesHighway and making it diffic ult and undesirable forany vehic lestravelling through Union Street.

TRAFFIX

A number of traffic engineering and transport planning factors has been considered, none of which would preclude the provision of traffic signals for the Bunnings Tempe access driveway altogether.

A separate, independent Road Safety Audit (RSA) has also been camied out for the concept design in accordance with the Road Safety's Guidelines for Road Safety Auditing Practices noting all safety findings can be addressed through subsequent detailed engineering design, and there are no safety items that has been raised in the RSA which would preclude the provision of traffic signals at this location altogether.

Furthermore, impacts to existing infrastructure within the road reserve, such as lighting, sewer, water, stomwater, electricity, gas etc. does not preclude the provision of traffic signals, and can be addressed through detailed engineering solutions/design and is a common component for brownfield projects.

SIDRA 9 network modelling has been undertaken for the Princes Highway comidor between Union Street / Smith Street and Ikea's Access Driveway, and the following is noteworthy:
(2) Under the approved scenario, SIDRA 9 modelling shows that for the PM peak period, vehic les would have to wait for up to 72.9 seconds to tum right into Bunnings from Princes Highway. This was modelled under the assumption that drivers would find small gaps in traffic acceptable, however if driver behaviours does not reflect this, extended delays may occur. This may pressure vehicles to find altemate routes into the site. As there are limited optionsfor vehic lesto tum back to the Bunningssite once already queuing for the right-tum, they may merge back in the through la ne and head towa rdsthe next signa lised intersection instead to tum right into the IKEA access and then tum around within the IKEA site to approach the Bunnings access southbound. Whilst this movement is banned there is little way to enforce this restriction. Drivers that remain queuing for the right tum may accept shorter and possibly unsafe gapsacross the three-la ne road.
(2) Under the proposed signa lised scenario, SIDRA has identified that the Princes Highway and Ikea Access intersection will be negatively impacted during the PM peak period and is expected to deteriorate to a LoS F in the evening peak period. Noting that the access operates as a LoS A in the AM and PM peak hour scenarios and LoS B in the Saturday scenario for the approved arrangement, this is a signific ant impact on the operation of the IKEA a ccess.

TRAFFIX

Overall, SIDRA modelling results has found that the curent approved scenario would have less impact to the existing road network operation notwithstanding that the right-tum into Bunnings Tempe under prionty control is expected to be underutilised due to potential delays and intimidate unconfident drivers.

In summary, the findings of the study have concluded that there are no reasons that would preclude the provision of traffic signals at the Tempe Bunning's access driveway altogether, and its feasibility is also dependent on many extemal factors other than traffic engineering or tra nsport pla nning:
(2) Ikea will need to be consulted to traffic signals as their customers will expenience greater delays when visiting or leaving the store during the PM peak hour, noting that the intersection operates at a LoSA in the approved PM scenario and a LoS F in the signalised concept scena rio which is a signific ant impact on the operation of the IKEA access.
(2) Bunnings may need to submit a modific ation application, including potential a mendments to their intemal carpark layout in order to provide a signalised access off Princes Highway that is simila r or an improvement to the concept scheme shown in this fea sibility study. This concept design may be further altered with larger impacts to the proposed Bunnings building by providing for improved vehic le storage at the egress.
(2) The SIDRA 9 modelling of the approved Bunning access a rangement shows significant delays for vehicles tuming right into Bunnings. Specific ally, the PM scenario shows that vehicles would have to wait for up to 72.9 seconds to tum right into Bunnings from Princes Highway. If drivers do not take shorter and potentially unsafe gaps, extended delays may occur which may pressure vehiclesto find altemate routes into the site.
(2) Impacts to existing infrastructure within the road reserve, such as lighting, sewer, water, stormwater, electricity, gas etc. will need to be addressed through detailed engineering solutions/design.
(2) Safety findings in the RSA will need to be addressed through detailed engineering solutions/design.
(2) Transport for NSW will need to provide concurrence to traffic signals noting a safer access for Bunnings c ustomers undera signa lised a rrangement via Princes Highway can potentia lly negatively impact Princes Highway / Ikea's access driveway during the PM peak hour.

Having considered the findings in the feasibility study, the following is recommended:

TRAFFIX

(2) At least two (2) additional independent Road Safety Audits (RSA) should be undertaken for the currently approved prionty controlled right-tum access into Bunnings via Princes Highway at the detailed design stage to ensure current conditions and opinions of different experts are adequately considered.
(2) TFNSW to explore signa lising the right-tum entry into Bunningssite under the c urrent approved a rrangement to address potential sa fety concems.
(2) Consideration to remove the right-tum access into Bunnings altogether if safe access to Bunnings via Princes Highway cannot be feasibility achieved.

CONTENTS

1. Introduction 1
1.1 Purpose 1
1.2 Scope of Work 1
2. Location and Site 2
3. Existing Traffic Conditions 5
3.1 Road Network 5
3.2 Key Intersections 8
3.3 Existing Traffic Volumes 13
4. Background Information 15
4.1 Approved Development and Traffic Report 15
4.2 AccessArangements 15
4.3 Parking Arrangements 15
4.4 Council's Response to Community Concerns 16
5. Warrant for Traffic Signals 17
5.1 Signal Wa rrant Assessment 17
5.2 Assessment Outc ome 19
6. Fea sibility of Traffic Signals 20
6.1 Concept Design to include Traffic Signals 20
6.2 Community and Resident Impacts 21
6.3 Public Transport 21
6.4 Accessibility for Bunnings Customers 22
6.5 Impacts on existing Trees and Street Fumiture 24
6.6 Pedestrian and Active Transport Movement Desire Lines 24
6.7 Impacts on Nearby Driveways and Intersections 24
6.8 Road Alignment 24
6.9 Sight Distance 25
6.10 Spacing between Signalised Intersections 25
6.11 See-Through Effects 25
6.12 Road Safety Audit 26
6.13 Changes to Adjacent Land 26
6.14 Other Impacts 27
7. Traffic Modelling 28
7.1 Methodology 28
7.2 Peak Period Intersection Performance 30
7.3 Modelling Summary 39
8. Conclusion 40
9. Recommendations 42

Appendices

AppendixA: Bunning Tempe Approved Architectural Plans
Appendix B: Concept Plan
Appendix C: Road Safety Audit
Appendix D: SIDRA Movement Summaries

TR/AFFIX

1. INTRODUC TION

1.1 Purpose

TRAFFIX has been commissioned by Inner West Council to assess the feasibility of providing traffic signals for a vehic ular access driveway off Princes Highway which is to provide access to the approved Bunnings Tempe Development at 750 Princes Highway, Tempe.

This report doc uments the findings of our investigations and should be read in the context of all documentations relating to the Bunnings Tempe DA a pproval, noting that installation of traffic signals will also need separate approval from Transport for New South Wales (TfNSW).

1.2 Scope of Work

The report is structured as follows:
(2) Section 2: Describes the site and its loc ation
() Section 3: Documents existing traffic conditions
(2)Section 4: Describes the background information
(2) Section 5: Provides an a nalysis on traffic signals warrants
(7) Section 6: Disc usses the feasibility of traffic signals
(Section 7: Disc usses traffic modelling results
(2) Section 8: Presents the overall study conclusions

TR/AFFIX

2. LOCATION AND SITE

The approved Bunnings Tempe site is located at 728-750 Princes Highway, Tempe (Lot 2 in DP 803493) and is loc ated on the southem side of Princes Highway, at the south-eastem comer of the intersection with Smith Street. It is also located about 7.5 kilometres south-west of the Sydney CBD a nd approximately 2.4 kilometres northwest of Sydney Airport.

The site has a total site area of approximately 2.04 hectares and has street frontages of approximately 150 metres to Princes Highway and approximately 120 metres to Smith Street.

The site has two separate vehicular access driveways located off Smith Street and Princes Highway.

At the time of this report, construction has not commenced on site. Under the approved application DA2017/00185, vehicular access was to be provided onto Smith Street and a vehicular access onto Princes Highway. These accesses are approved with the following restric tions:
(3) No left tum entry into site at Princes Highway access.
(1) No right tum onto Princes Highway.
(3) No left tum exit from Smith Street access.

A Location Plan is presented in Figure 1, with a Site Plan presented in Figure $\mathbf{2}$.

Figure 1: Location Plan

TR^AFIX

Figure 2: Site Plan

TR/AFFIX

3. EXISTING TRAFFIC CONDITIONS

3.1 Road Network

The road hierarchy in the vicinity of the site is shown in Figure 3 with the following roads of partic ula r interest:

(2) Princes Highway:

() Smith Street:
() Union Street:
a TFNSW Main Road (MR 1) that generally runs in a northeast to southwest direction between Broadway in the northeast and the Vic torian border in the southwest. In the vic inity of the site, Princes Highway ca miesthree (3) lanes of traffic a nd is subject to a speed zoning of $60 \mathrm{~km} / \mathrm{h}$. The southem kerbside lane is subject to a clearway restriction between 3:00pm-7:00pm Monday to Friday and the northem kerbside lane is subject to a clearway restriction between 6:00am-10:00am Monday to Friday. Kerbside parking is permitted along limited sections of the highway, subject to va rious restrictions.
a local road that traverses northwest to southeast between Princes Highway in the northwest and a cul-de-sac in the southeast. Smith Street is subject to a local speed zoning of $50 \mathrm{~km} / \mathrm{h}$ and camies a single lane of traffic in either direction. Unrestricted kerbside parking is permitted a long eitherside of the road.
a one-way local road that generally traverses in a north-south direction between Unwins Bridge Road in the north and Princes Highway in the south. Union Street is subject to a local speed zone of $50 \mathrm{~km} / \mathrm{h}$ and a ccommodates a single lane of northbound traffic. Tempe Public School is located on Union Street and sections of the road are subject to a $40 \mathrm{~km} / \mathrm{h}$ school zone restriction between 8:00am-9:30am and 2:30-4:00pm on school days. Unrestricted kerbside parking is permitted along eitherside of the road.

TRAFFIX

Abstract

(2) Brooklyn Street: (2) Foreman Street: a local road that generally traverses in a north-south direction between School Lane in the north and Princes Highway in the south. Brooklyn Street is subject to a local speed zone of $50 \mathrm{~km} / \mathrm{h}$ and accommodates a single lane of traffic in each direction. Unrestricted kerbside parking is permitted a long eitherside of the road. a one-way local road that generally traverses in a north-south direction between Unwins Bridge Road in the north and Princes Highway in the south. Foreman Street is subject to a local speed zone of $50 \mathrm{~km} / \mathrm{h}$ and ac commodatesa single la ne of southbound traffic. Unrestricted kerbside parking is permitted along either side of the road.

TRAFFIX

Figure 3: Road Hierarchy

TR/AFFIX

3.2 Key Intersections

The key intersections in the vicinity of the site are shown below and provide an understanding of the existing road geometry and alignment in the locality.

3.2.1 Intersection of Princes Highway, Union Street and Smith Street

Figure 4: Intersection of Princes Highway and Union Street

It can be seen from Figure 4 that the intersection of Princes Highway and Union Street is a fourlegged signalised intersection. The main attributes of each approach are outlined below:
(1) Princes Highway (northeast and southwest legs):

- The north bound approach provides three (3) through lanes. This allows for both left tums onto Union Street and right tums onto Smith Street.
- The south bound approach provides three (3) through lanes. This allows for left tums onto Smith Street, however, right tums onto Union Street are not pemitted.

TR/AFFIX

(2) Smith Street (southeast leg):

- The north bound approach provides one (1) through lane and one (1) short left tum lane.Union Street (northwest leg):
- This is a one-way road in a northbound direction and therefore provides no approach la nes, instead providing a single exit lane.

3.2.2 Intersection of Princes Highway and Brooklyn Street

Figure 5: Intersection of Princes Highway and Brooklyn Street

It can be seen from Figure 5 that the intersection of Brooklyn Street and Princes Highway is a three-legged priority intersection. The main attributes of each approach are outlined below.
(Princes Highway (northeast and southwest legs):

- The north bound approach provides three (3) through lanes from which left tums are pemmitted from the kerbside lane onto Brooklyn Street.
- The south bound a pproach providesthree (3) through lanes. A median extendsa cross the intersection and restricts any right tums.

TR/AFFIX

(2) Brooklyn Street (northwest legs)

- The south bound approach providesa single through la ne which permits left tums only onto Princes Highway.

3.2.3 Intersection of Princes Highway and Proposed Bunning Access/ Ikea Servicing Access

Figure 6: Intersection of Princes Highway and Proposed Bunnings Access/ Ikea Access

It can be seen from Figure 6 that the intersection of Princes Highway and the future Bunnings Access/Ikeas Servicing Access is a three-legged priority intersection. This intersection is to be upgraded forthe construction of the Bunnings development. The ma in attributes of the existing and future la yout are outlined below.
(2) Princes Highway (northeast a nd southwest legs):

Existing Layout

- The north bound approach provides three (3) through lanes. A median currently extends a cross the intersection, preventing right tums into the Bunnings site.
- The south bound approach providesthree (3) through lanes. The kerbside lane allows for left tums into the Bunnings site but restricted to deliveries only.

TR/AFFIX

Future Layout

- The north bound a pproach provides three (3) through lanes. A short night tum lane will be constructed in the future to enable right tums into the Bunnings access.
- The south bound approach provides three (3) through lanes. Left tums will not be permitted into the BunningsAccess.
© Bunnings Access (southeast leg)

Existing Layout

- The north bound approach providesa single through lane which permits left tums only onto Princes Highway.

Future Layout

- The north bound approach providesa single through lane which permits left tums only onto Princes Highway.

3.2.4 Intersection of Princes Highway and Foreman Street

Figure 7: Intersec tion of Princes Highway and Foreman Street

TR/AFFIX

It can be seen from Figure 7 that the intersection of Princes Highway and Foreman Street is a three-legged priority intersection. The main attributes of each approach are outlined below.
(2) Princes Highway (northeast and southwest legs):

- The north bound approach provides three (3) through lanes. Left tums are not permitted onto Forman Street as this road is one-way.
- The south bound approach provides three (3) through lanes. No right tums are permitted at this intersec tion as Forman Street is restric ted to one-way traffic.
() Foreman Street (northwest leg)

Existing Layout

- The south bound approach provides a single through lane from which left and right tums onto Princes Highway a re permitted.

Future Layout

- Under the approved design for the Bunnings development, the concrete median on Princes Highway will be closed, prohibiting right tums out of Foreman Street.

3.2.5 Intersection of Princes Highway and IKEA Access

Figure 8: Intersection of Princes Highway and IKEA Access Road

TR^AFIX

It can be seen from Figure 8 that the intersection of Princes Highway a nd the IKEA Access Road is a three-legged signalised intersection. The main attributes of each approach are outlined below.
(2)Princes Highway (east and west legs):

- The east bound approach providesthree (3) through lanes and a short right tum lane.
- The west bound approach provides three (3) through la nes a nd short left tum la ne.
(2) IKEA Access Road (south leg)
- The north bound approach provides two (2) right tum lanes and a short-left tum lane.

3.3 Existing Traffic Volumes

The existing daily throughputsfor the key intersectionslocated in the vic inity of the site and can be summa rised as follows:
(2) Intersection of Princes Highway, Smith Street and Union Street

- Weekday moming peak hour throughput of 3,755 vehicles
- Weekday evening peak hour throughput of 3,998 vehicles
- Weekend peak hour throughput of 3,483 vehicles
(2) Intersection of Princes Highway a nd Brooklyn Street
- Weekday moming peak hour throughput of 3,716 vehicles
- Weekday evening peak hour throughput of 3,930 vehicles
- Weekend peak hour throughput of 3,422 vehicles
(2) Intersection of Princes Highway and Bunnings Access/IKEA Servicing Access
- Weekday moming peak hour throughput of 3,676 vehicles
- Weekday evening peak hour throughput of 3,911 vehicles
- Weekend peak hour throughput of 3,408 vehicles
(Intersection of Princes Highway and Foreman Street
- Weekday moming peak hour throughput of 3,705 vehicles
- Weekday evening peak hour throughput of 3,931 vehicles
- Weekend peak hour throughput of 3,458 vehicles
() Intersection of Princes Highway a nd IKEA Access Road
- Weekday moming peak hour throughput of 3,722 vehicles
- Weekday evening peak hour throughput of 4,220 vehicles
- Weekend peak hour throughput of 4,128 vehicles

TR/AFFIX

4. BACKG ROUND INFORMATION

4.1 Approved Development and Traffic Report

The approved development for the subject site consists of works for the construction of a Bunnings development being a hardware and building supplies store. A traffic report was prepared for the development application prepared by Transport and Traffic Planning Associates (Ref: 17053, dated October 2017, Rev E).

The traffic report undertook a SIDRA intersection a nalysis at the intersection of Princes Highway and the proposed access and Princes Highway and Smith Street. The study concluded that the results of the SIDRA assessment indicated satisfactory operational performance at the access and intersection, with both sites operating at a LOS A in the moming, evening and weekend scena rios with the development traffic incorporated.

4.2 Access Arrangements

The access arrangements as detailed within the traffic report prepared for DA describes the following:
(2) Smith Street access: Ingress and egress for the capark and ingress for delivery/service vehicles.
(3) Princes Highway: Right tum ingress and left tum egress for the cappark and left tum egress fordelivery/service vehicles.

4.3 Parking Arrangements

The DA traffic report details that a total of 424 parking spaces will be provided within the basement capark for Bunnings including accessible and trailer spaces.

TR/AFFIX

4.4 Council's Response to Community Concerns

Council has received concems from Tempe residents regarding the approved traffic a rrangements, and safety concems. On this matter Transport for NSW has advised residents that they "would support further risk assessment being undertaken by either Bunnings or Council of the Princes Highway access and a feasibility review of the traffic lights to determine if the safety and network impacts could be effectively mitigated".

TR/AFFIX

5. WARRANTFOR TRAFFIC SIGNALS

5.1 Signal Wa mant Assessment

The TFNSW Traffic Signal Design Guide Section 2 describes the general warrants for the installation of a signalised intersection. The following is the assessment criteria to determine if the intersection meets the warrants for a signalised intersection. As construction has not commences at the time of this report, development traffic generation has been used in lieu of traffic data for the minorlegs being for the Bunnings access.

Traffic for a TCS wa rant assessment is presented in Table $\mathbf{1}$ below:

Table 1: Traffic Data forTiNSW Warrants

Time	Trafic - Vehicles/ hour		
	Pinces Highway Eastbound	Pinces Highway Westbound	Approved Bunning Tempe Development Volumes in One Direction
Weekday			
Hourly AM Average	2731	836	60 veh/hour in the AM peak
Hourly PM Average	1187	2571	186 veh/hour in the PM peak
Saturday			
Hourly SATAverage	1624	1422	445 veh/hour

A signalised intersection may be considered if one of five warrants is met (as per the Traffic Signal Design Manual - Section 2 Warrants). The relevant warrants are summa rised below.

a) Traffic Demand:

Foreach of four one-hour periods of an average day:
I. The major road flow exceeds 600 vehicles/hour in each direction; and
II. The minor road flow exceeds 200 vehicles/hour in one direction.

TR/AFFIX

WARRANTMET:

Traffic survey data collected as part of this feasibility study shows a verage hourly volume on Princes Highway well exceeding the 600 vehic les/hour threshold in each direction during both the weekday AM and PM peak period as well as the weekend peak period.

The approved traffic report also estimated BunningsTempe is expected to generate up to 445 vehicles/hour on the weekend and is expected to satisfy the minor road flow requirements of 200 vehicles/hour requirement.

Accordingly, traffic demand-based signal warrant isconsidered to be met on weekends.

OR

b) Continuous Traffic:

Foreach of four one-hour periods of an average day:
I. The major road flow exceeds 900 vehicles/hour in each direction; and
II. The minor road flow exceeds 100 vehicles/hour in one direction; and
III. The speed of traffic on the major road or limited sight distance from the minor road causes undue delay or hazard to the minor road vehicles; and
IV. There is no other nearby traffic signal site easily accessible to the minor road vehicles.

WARRANTTENTATIVELY MET:

Item (ii) and (iii) a re subjective and can be argued that it is unsafe for vehicles to tum across three (3) lanes of traffic camying over 2,600 veh/hr in the PM peak hour, and that the existing signa lised intersection at Princes Highway / Union Street / Smith Street is not an appropriate a ltemative, especially for la rge trucks.

Accordingly, the continuous traffic based signal warrant is considered to be tentatively met.

> OR

c) Pedestrian Safety:

Foreach of four one-hour periods of an average day:
I. The pedestrian flow crossing the major road exceeds 150 pedestrian/hour, and

TR/ FFIX

II. The major road exceeds 600vehicles/hour in each direction or, where there is a central median of at least 1.2 m wide, 1000 vehic les/hour in each direction.

WARRANTNOTMET:

The pedestrian volumes at this intersection do not meet the warrants.

OR

d) Pedestrian Safety - high speed road:

Foreach of four one-hour periods of an average day:
I. The pedestrian flow crossing the major road exceeds 150 pedestrian/hour, and
II. The major road exceeds 450vehicles/hour in each direction or, where there is a central median of at least 1.2 m wide, 750 vehic les/hour in each direction; and
III. The $85^{\text {th }}$ percentile speed on the major road exceeds $75 \mathrm{~km} / \mathrm{hour}$.

WARRANTNOTMET:

The pedestrian volumes at this intersection do not meet the warrants.

OR

e) Crashes:
I. The intersection has been the site of an average of three or more reported towa way or casualty traffic accidents per year over a three year period, where the traffic accidents could have been prevented by traffic signals; and
II. The traffic flows are at least 80\% of the appropriate flow warrants.

WARRANTNOTMET:

Not applicable to a new intersection.

5.2 Assessment Outcome

Based on the signal warrant assessment presented in Section 5.1, it is considered that traffic signals a re warranted at the Bunnings Tempe Princes Highway a ccess driveway.

TR/AFFIX

6. FEASIBILTY OF TRAFFIC SIGNALS

6.1 Concept Design to include Traffic Signals

On the basis that traffic signals are warranted at the approved Bunnings Tempe Princes Highway access driveway; a Concept Plan has been developed to show a signalised intersection la yout that could be physic ally accommodated within the existing driveway with minimal changes to the intemal configuration of the Bunnings development.

The Concept Plan depictsa signalised intersection la yout that a imsto conta in all vehicle egress onto Princes Highway and making it diffic ult and undesirable for any vehic lestravelling through Union Street.

It is a lso pertinent to note that the curently a pproved accessdriveway does not pemit vehic les to tum left into Bunnings via Princes Highway and the approved driveway has been slightly angled to deter this partic ular vehic ular movement. This has been retained in the Concept Plan.

Accordingly, a Concept Plan has been developed using "Proposed Road Layout General Arrangement Plan - Option 2" as a base plan prepared by at\&l (reproduced in Appendix A) which is understood to be the currently approved access layout for the Bunnings Tempe development.

It is also noted that swept path analysis has been undertaken to ensure a 20 m Articulated Vehicle (AV) can tum into and out of the site satisfactorily, and are shown on the concept drawings.

The Concept Plan prepared for the purposes of this feasibility study is provided in Figure 9 and reproduced at full scale in Appendix B.

TR/AFFIX

Figure 9: Concept Plan for Bunnings Tempe Signalised Princes Highway Access Driveway

6.2 Community and Resident Impacts

The Concept Design shows there are unlikely to be any additional impacts to local community and residents when compared to the currently approved access a rrangement.

Furthemore, removing vehicle egress on Smith Street and allowing vehicles to tum right onto Princes Highway addresses local community concems, making it diffic ult and undesirable for Bunnings traffic to travel through Union Street.

6.3 Public Transport

The Concept Design does not have an impact on any existing public transport infrastructure.

TR/AFFIX

6.4 Accessib ility for Bunnings C ustomers

The Concept Plan shows a signalised tum off Princes Highway can potentially achieve improved access for Bunnings' customers, as they will be able to utilise the right-tum lane to access Bunnings under a safer, green phase instead of trying to find a safe gap to cross three (3) la nes of traffic on an arterial road which carmes a signific a nt volume of traffic (up to 2,683 vehicles in the southbound direction during the PM peak hour) and a bicycle route.

This will a lso likely reduce the number of northbound right tum vehic lesoccupying the rightmost through lane at the PrincesHighway / Smith Street / Union Street intersection to a ccess Bunnings via Smith Street, negatively impacting the through lane capacity.

All egress vehic les will also have convenient access directly onto the arterial road network, being Princes Highway and is potentially an improvement over the currently approved egress a rrangements.

Google Mapsalso show similar ravel times forthose customers situa ted northwest of the railway line travelling through Railway Road when tuming right onto Princes Highway instead of travelling through Union Street as currently a pproved. Ma rickville Station has been used as a reference point and the PM peak hour travel times a re provided in Figure 10 and Figure 11.

Notwithstanding the above, Bunnings' customer may still choose to turn left onto Princes Highway, then left onto Smith Street to perform a U-tum at the cul-de-sac to access Union Street. In any event, the delays resulting from traversing three sets of traffic signals will likely deter motorists from taking this route. In any event, the revised access / egress a rangement will result in signific antly less traffic ac cessing Union Street compared to the curently a pproved vehicular access a rrangement.

TR^FFIX

Figure 10: Norwest Customers Travel Time Through Railway Road

Figure 11: Norwest Customers Travel Time Through Union Street

TR/AFFIX

6.5 Impacts on existing Trees and Street Fumiture

The Concept Plan shows a signalised intersection can potentially be accommodated entirely within the existing design without affec ting trees a nd street fumiture as currently approved.

6.6 Pedestrian and Active Transport Movement Desire Lines

The Concept Plan shows a signalised intersection can potentially be accommodated entirely within the existing design without affecting pedestrian and active transport movement desire lines as c urrently a pproved.

It is envisaged that pedestrian movements on the southem side of Princes Highway will be substantially improved and better protected under a signalised access arrangement compared the currently a pproved access arrangement where they will need to travel almost 30 metres a cross the two driveways, and being vulnerable to vehicles tuming right into the site that are likely to be more foc used on finding a suitable gap across three lanes of busy traffic and not able to suffic iently observe pedestrians.

6.7 Impacts on Nearby Driveways and Intersections

The Concept Plan shows a signalised intersection can potentially be accommodated entirely within the existing design without affecting nearby driveways and intersections as currently approved.

6.8 Road Alignment

The Concept Plan shows the centreline of Prince Highway and Tempe Bunning's driveway generally intersect close to 90°. An inspection of existing site conditions also identified a large vertical curve (crest) located south of the proposed intersection on Princes Highway. No concems are raised in regard to the existing vertical alignment, which appears to provide sufficient sight distance for the northbound and southbound approaches.

Furthermore, it is considered that all approaches are generally straight, and drivers are expected to have clear view of traffic signals, if implemented.

6.9 Sight Distance

It is noted Approach Sight Distance (ASD), Minimum Gap Sight Distance (MGSD) and Safe Intersection Sight Distance (SISD) are desirable at signalised intersections but not a mandatory requirement asperAustroads Guide to Road Design Part 4A 2021 (AGRD Part 4A, 2021).

Accordingly, it is reasonable to conclude these parameters do not influence the feasibility of providing traffic signals at this location.

In addition, it should be noted that the concept plan would result in slight widening of Princes Highway at the point of the proposed intersection which will result in a change to the existing alignment of the roadway, causing a minor bend in the path of travel for vehicles. As per Section 6.8, all approaches are generally straight, and drivers are expected to have a clear view of traffic signals if implemented. Therefore, this a rangement is not expected to have any impact on the intersection sight distance.

6.10 Spacing between Signalised Intersections

AG RD Part 4 specifies that it is desirable that intersections should be separated by at least five (5) sec onds of travel time at the design speed to provide time fordrivers to process information relating to traffic, the road layout and traffic signs.

Accordingly, it is desirable that intersections along Princes Highway within the vic inity of the site with a design speed limit of $70 \mathrm{~km} / \mathrm{h}$ (sign-posted speed limit of $60 \mathrm{~km} / \mathrm{h}$) are spaced at least some 97 metres apart.

Notwithstanding, the introduction of traffic signals at the Tempe Bunning's Princes Highway access driveway does not change the spacing to its nearby intersections as currently approved.

6.11 See-Through Effects

See through effect refers to a driver approaching along the major road focuses on green lights at the sec ond intersection rather than red lights at the first intersection.

TRAFFIX

This is unlikely a concem for southbound drivers approaching the signalised lkea access driveway, which is located approximately 200 metres north and southbound drivers do not have a direct line of sight to the proposed signals due to the existing horizontal road alignment. No concems are raised for vehicles approaching the proposed intersection from the south, noting the substantial distance to the lkea intersection, which exceeds Austroads recommendations.

This is a lso unlikely to be a concem for northbound drivers approaching the signalised Princes Highway / Union Street / Smith Street intersection asit will be spaced a pproximately 150 metres apart, meeting minimum AGRD Part 4 requirements. Likewise, vehicles approaching the proposed intersection from the north will benefit from the 150 metres intersection spacing with no concems raised by see through effects.

Furthermore, it is noted that the spacing between Princes Highway / Union Street / Smith Street signals and the signalised pedestrian crossing in front of 725-727 Princes Highway is some 110 metres apart, and there are no existing concems with see through effects.

6.12 Road Safety Audit

An independent Road Safety Audit (RSA) has been camied out for the concept design in accordance with the Road Safety's Guidelines for Road Safety Auditing Practices, including a completed checklist as sourced from the Austroads Guide to Road Safety Part 6A Implementing Road Safety Audits.

The RSA is reproduced in full in Appendix C noting all safety findings can be addressed through subsequent detailed engineering design and there are no safety items that would preclude the provision of traffic signals at this location altogether.

6.13 Changesto Adjacent Land

The concept design proposed above would involve the following spatial changes in relation to IKEA's property:
(2) Potential acquisition of $108.7 \mathrm{~m}^{2}$ of area along Princes Highway to allow for the signalised intersection a rangement.

TR/AFFIX

(2) The above would result in the re-alignment of the IKEA property boundary on the north westem frontage to Princes Highway.

6.14 Other Impacts

There may be other impacts that can affect the feasibility of providing traffic signals at this location and will need to be separately reviewed by consultants in those respective fields, some of these include:
(2) Environmental impacts;
(2)Socio-economic impacts;
(2) Heritage impacts;
(Street lighting requirements;
(2) Pavement impacts; and
(Stomwater and drainage impacts.

Generally, impacts to existing infrastructure within the road reserve, such as lighting, sewer, water, stormwater, electricity, gas etc. can be addressed through detailed engineering solutions/design and is a common component for brownfield projects.

TR/AFFIX

7. TRAFFIC MODEШNG

7.1 Methodology

A SIDRA 9 Network model hasbeen developed for the Princes Highwa y comidor between Union Street / Smith Street and Ikea's Access Driveway to detemmine the road capacity implications if the approved Tempe Bunning's Princes Highway access driveway were signalised as discussed in Section 6.

7.1.1 Surveys

Traffic surveys were undertaken at the key intersections described in Section 3.2, which are considered to be most critical in relation to the site. These counts were undertaken during a weekday moming peak between 7:00am-9:00am and an evening peak between 4:00pm6:00pm on the 29th of June 2022. In addition, surveys were also conducted on a typical Saturday peak period between 11:00am-200pm on 23 J uly 2022.

The individual peak hour volumes for each intersection have been used within the SIDRA 9 modelling which is presented in Section 7.2 as a worst-case assessment. The relevant peak periods for each intersection are listed below for reference.
(2) Intersection of Princes Highway, Smith Street and Union Street

- AM Peak: 7:45am-8:45am; and
- PM Peak: 5:00pm-6:00pm.
- SATPeak: 12:45pm-1:45pm.
(2) Intersection of Princes Highway a nd Brooklyn Street
- AM Peak: 7:45am-8:45am; and
- PM Peak: 4:45pm-5:45pm.
- SATPeak: 12:45pm-1:45pm.
(2) Intersection of Princes Highway and Bunnings Access/IKEA Servic ing Access
- AM Peak: 7:45am-8:45am; and
- PM Peak: 4:45pm-5:45pm.
- SATPeak: 12:45pm-1:45pm.
(2) Intersection of Princes Highway and Foreman Street
- AM Peak: 7:45am-8:45am; and
- PM Peak: 4:45pm-5:45pm.
- SATPeak: 12:30pm-1:30pm.
() Intersection of Princes Highway a nd IKEA Access Road
- AM Peak: 7:45am-8:45am; and
- PM Peak: 5:00pm-6:00pm.
- SATPeak: 12:30pm-1:30pm.

7.1.2 Intersection Performance Measures

The survey data forms the base case volumes for software modelling undertaken to assess intersection performance characteristics under existing traffic conditions. The SIDRA Intersection 9 model produces a range of outputs, the most useful of which are the Degree of Saturation (DoS) a nd Average Vehicle Delay per vehicle (AVD). The AVD is in tum related to a level of service (LoS) criteria. These performance measures can be interpreted using the following explanations:

DoS- the DoS is a measure of the operational performance of individual intersections. As both queue length and delay increase rapidly as DoS approaches 1, it is usual to attempt to keep DoS to less than 0.9. When DoS exceeds 0.9 residual queues can be a nticipated, a s occurs at many major intersectionsthroughout the metropolitan a rea during peak periods. In this regard, a practical limit at 1.1 can be assumed. For intersections controlled by roundabout or give way/stop control, satisfactory intersection operation is generally indicated by a DoS of 0.8 or less.

AVD - the AVD for individual intersections provides a measure of the operational performance of an intersection. In general, levels of acceptability of AVD for ind ividual intersections depend on the time of day (motorists generally accept higher delays during peak commuter periods) a nd the road system being modelled (motorists are more likely to accept longerdelays on side streets tha n on the ma in road system).

LoS- thisisa comparative measure which providesan indic ation of the operating performance of an intersection.

TR/AFFIX

7.2 Peak Period Intersection Performance

In order to compare the traffic implications of potential signals at the Bunnings Tempe Princes Highway access driveway, the following scenarios has been assessed:
(1) Existing Road Coridor (2022 Traffic Surveys);
(3) Approved Prionity Controlled Access(2022 Traffic Surveys+Bunnings' Traffic underApproved Arrangements); and
(1) Signals at the Bunnings Princes Highway access driveway (2022 Traffic Surveys + Bunning's Rerouted Traffic underthe Signalised Access Arrangements).

7.2.1 Tip Distribution under Signalised Scenario

The traffic report prepared by Transport and Traffic Planning Associates (Ref: 17053, dated October 2017, Rev E) details the assumptions regarding traffic distribution. The SIDRA 9 traffic modelling conducted as part of this feasibility study adopts the same traffic distribution assumptions to assign the traffic generated by the Bunnings Tempe development onto the adjacent road network for the signalised scenario.

On the above basis, the traffic distribution adopted in the modelling of the signa lised scenario are shown in Figures 10, 11 and 12.

TR^AFIX

Figure 10: AM Traffic Distribution (veh/hr)

Figure 11: PM Traffic Distribution (veh/hr)

TR^AFIX

Figure 12: Saturday Traffic Distribution (veh/hr)

7.2.2 Existing Scenario

The Princes Highway corridor between Union Street / Smith Street and Ikea's Access Driveway adopted for the existing scenario is shown in Figure 13.

Figure 13: Existing Scenario Road Network Layout

A summary of the modelled results for the existing scenario are provided below in Table 2. Reference should also be made to the SIDRA outputs provided in Appendix D which provide detailed results for individual lanes a nd a pproa ches.

TR/AFFIX

Table 2: Existing Scenario Intersection Performance

Intersection	Control	Scenario	Period	DoS	AVD	los
Princes Highway, Union Street and Smith Street	Signal	Existing	AM	0.674	15.5	B
			PM	0.681	10.2	A
			SAT	0.426	5.8	A
Princes Highway and Brooklyn Street	Priority*	Existing	AM	0.525	13.3	A
			PM	0.492	6.4	A
			SAT	0.425	7.7	A
Princes Highway and Ikea Servicing Access	Prionty*	Existing	AM	0.522	2.3	A
			PM	0.494	8.9	A
			SAT	0.317	4.0	A
Princes Highway and Foreman Street	Priority*	Existing	AM	0.935	849.6	F
			PM	1.090	818.2	F
			SAT	0.325	260.3	F
Princes Highway and IKEA Access	Signal	Existing	AM	0.603	3.8	A
			PM	0.645	9.2	A
			SAT	0.649	17.9	B

* LoS for priority intersections based on the worst performing movement in accordance with TfNSW Guide to Traffic Generating Development.

It can be seen from Table 2 that:
(2) Princes Highway, Union Street and Smith Street intersection currently operates satisfa ctorily during all peak periods at either LoSA or B;
(2) Princes Highway and Brooklyn Street intersection currently operates satisfa ctorily during all peak periodsat LoSA;
(2) Princes Highway and Ikea Servicing Access intersection currently operates satisfactorily during all peak periods at LoSA;

TR/AFFIX

(2) Princes Highway and Foreman Street intersection c urrently operates at LoS F during all peak periods, this is prima rily due to vehicles tuming right out of Foreman Street experiencing substa ntial dela ys when they need to identify a safe gap between six (6) la nes of busy traffic , and the modelling results reflects the diffic ulty of this movement; and
(2) Princes Highway and Ikea Access intersection currently operates satisfactorily during all peak periods at either LoSA or B.

7.2.3 Approved Scenario

The Princes Highway corridor between Union Street / Smith Street and Ikea's Access Driveway adopted for the approved scenario is shown in Figure 14.

Figure 14: Approved Scenario Road Network Layout

A summary of the modelled results for the approved scenario are provided below in Table 3. Reference should also be made to the SIDRA outputs provided in Appendix D which provide deta iled results for individual lanes and a pproa ches.

Table 3: Approved Scenario Intersection Performance

Intersection	Control	Scenario	Period	DoS	AVD	IoS
Princes Highway, Union Street and Smith Street	Signal	Approved	PM	0.840	20.8	B
			AM	0.754	17.8	B
Princes Highway and Brooklyn Street	Prionity*	Approved	AM	0.863	27.0	B

TR/AFFIX

Intersection	Control	Scenario	Period	DoS	AVD	LoS
			SAT	0.340	6.5	A
Princes Highway and Ikea Servicing Access	Pronity*	Approved	AM	0.527	2.2	A
			PM	0.496	6.6	A
			SAT	0.332	3.7	A
Princes Highway and Foreman Street	Prionty*	Approved	AM	0.527	11.8	A
			PM	0.495	6.4	A
			SAT	0.339	7.9	A
Princes Highway and IKEA Access	Signal	Approved	AM	0.617	3.9	A
			PM	0.772	9.8	A
			SAT	0.686	17.8	B
Princes Highway and Bunnings Tempe Access	Prionty*	Approved	AM	0.527	9.8	A
			PM	0.496	72.9	F
			SAT	0.353	31.5	C

* LoS for priority intersections based on the worst performing movement in accordance with TfNSW Guide to Traffic Generating Development.

It can be seen from Table 3 that:
(2)Princes Highway, Union Street and Smith Street intersection is expected to operate satisfa ctorily under the a pproved scenario during all peak periods at LoSB;
(2) Princes Highway and Brooklyn Street intersection is expected to operate satisfactorily under the a pproved scena rio during all peak periods at LoS B;
(2)Princes Highway and Ikea Servicing Access intersection is expected to operate satisfactorily under the a pproved scenario during all peak periods at LoSA;
(3) Princes Highway and Foreman Street intersection is expected to continue to operate at LoSA under the approved scenario during all peak periods.
(2) Princes Highway and Ikea Access intersection is expected to operate satisfactorily under the approved scenario during all peak periods at either LoSA or B; and

TRAFFIX

(2) The approved Princes Highway and Tempe Bunning Access is expected to operate satisfactorily during the AM peak period at LoS A but will however operate at LoS F during both the PM and Saturday peak periods due to:

- During the PM peak hour, 13 vehiclestuming right into Bunnings via Princes Highway will experience delays in order to identify a safe gap between 2,837 through vehicle movements. The modelling showed that the right tums into Bunnings under this scena rio experienced an average delay of 72.9 seconds. It should a lso be noted that the network model takes into account the bunching caused by the upstream signalised intersection. Within the SIDRA model, gap acceptance parameter for this right tum movement has been set as "high", however even with drivers choosing smallergapswhich could potentially be dangerous, the intersection operates at a LoS F; and
- During the Saturday peak hour, 47 vehicles tuming right into Bunnings via Princes Highway will experience substantial delays in order to identify a safe gap between 1,839 through vehicle movements. The modelling showed that the right tums into Bunnings under this scenario experienced an average delay of 31.5 seconds. As above, the effect of bunching is also incomorated from the upstream signal due to the intersection being modelled as part of a network.

The SIDRA modelling of the approved intersection la yout shows that signific a nt delaysare expected under this scenario. This is expected to result in safety concems at the intersection as driver anxiety over the increasing delay will cause them to accept risks a ssoc iated with selecting smaller gaps.

Notwithstanding, it is noted that if drivers do not choose short gapsasmodelled, vehicles are unlikely to wait for extended periods to tum right into Bunnings via Princes Highway and may instead find a nother route. With limited opportunity to tum a round once at the point of the short right tum la ne of the approved scenario, vehiclesmay merge back into the through lane to proceed to the next signalised intersection and use the IKEA access and roundabout within the site to tum around and approach the site from a southbound direction. Whilst the approved Bunnings development does not permit left tums into the site this will be diffic ult to enforce and with consideration of the delaysthat are expected from the SIDRA modelling of the a pproved scenario, vehicles may still attempt to tum left into the site.

TR/AFFIX

In addition, it should be noted that Princes Highway is a bicycle route and pedestrians wa lking a long the fronta ge of the site a re required to c ross both the IKEA a ccessdriveway and the a pproved Bunningsaccess without any refuge point between the two accesses. Drivers will be required to seek gaps in a high volume three-lane road and also look for pedestrians crossing along the frontage of the site at the access which may be missed by drivers that are concentrating on finding a sufficient gap to avoid long delays. Therefore, there are some signific a nt risks associated with both road a nd pedestrian users for the approved access a rrangements.

7.2.4 Signalised Scenario

The Princes Highway corridor between Union Street / Smith Street and Ikea's Access Driveway adopted for the approved scenario is shown in Figure 15.

Figure 15: Signalised Scenario Road Network Layout

A summary of the modelled results for the signalised scenario are provided below in Table 4. Reference should also be made to the SIDRA outputs provided in Appendix D which provide detailed results for individual lanes and approaches.

TR^FFIX

Table 4: Signalised Scenario Intersection Performance

Intersection	Control	Scenario	Period	DoS	AVD	LoS
Princes Highway, Union Street and Smith Street	Signal	Signalised Concept	AM	0.680	30.5	B
			PM	0.717	5.2	A
			SAT	0.682	7.0	A
Princes Highway and Brooklyn Street	Prionity*	Signalised Concept	AM	0.569	8.4	A
			PM	0.512	5.7	A
			SAT	0.414	6.5	A
Princes Highway and Ikea Servicing Access	Priority*	Signalised Concept	AM	0.527	3.0	A
			PM	0.490	6.5	A
			SAT	0.336	3.8	A
Princes Highway and Foreman Street	Prority*	Signalised Concept	AM	0.527	11.8	A
			PM	0.473	6.4	A
			SAT	0.469	8.0	A
Princes Highway and IKEA Access	Signal	Signalised Concept	AM	0.604	3.6	A
			PM	1.229	167.6	F
			SAT	0.713	17.6	B
Princes Highway and Bunnings Tempe Access	Signal	Signa lised Concept	AM	0.677	4.8	A
			PM	0.751	15.0	B
			SAT	0.721	20.1	B

* LoS for priority intersections based on the worst performing movement in accordance with TFNSW Guide to Traffic Generating
Development.

It can be seen from Table 4 that:

(2) Princes Highway, Union Street and Smith Street intersection is expected to operate satisfactorily under the signalised scenario during all peak periodsat either LoSA or B;

TR^AFIX

(2) Princes Highway and Brooklyn Street intersection is expected to operate satisfactorily under the signa lised scena rio during all peak periods at LoSA;
? Princes Highway and Ikea Servicing Access intersection is expected to operate satisfactorily under the signalised scenario during all peak periods at LoSA;
2. Princes Highway and Foreman Street intersection is expected to continue to operate at LoSA under the signalised scenario during all peak periods;
2. Princes Highway and Ikea Access intersection is expected to operate satisfactorily under the signalised scenario during AM and Saturday periods at either LoSA or B but is however found to operate at LoS F during the PM peak period. The intersection will experience an a verage delay of 167.6 seconds during the PM peak period which is a signific ant impact to the IKEA development; and
(2) The signalised Princes Highway and Tempe Bunning Access is expected to operate satisfactorily during all peak periods at either LoS A or B.

7.3 Modelling Summary

Based on the modelling results presented in Section 7.2 the following is noteworthy:
(2) Under the approved scenario, vehicleswill find it diffic ult to tum into Bunnings Tempe during the PM and Saturday peak periods and will likely instead use an altemate route.
(2) Under the signalised scenario, SIDRA has identified the Princes Highway and Ikea Access intersection will be negatively impacted during the PM peak period and is expected to deteriorate to a LoSF.

Overall, SIDRA modelling results hasfound that the current a pproved scena rio would have the least impact to the existing road network operation noting the impact to the upstream IKEA access under a signalised access scenario. This is notwithstanding that the right-tum into Bunnings Tempe under priority control is expected to be underutilised due to potential delays if drivers do not choose small and potentially unsafe gaps to tum right into the subject site.

TR/ FFIX

8. CONCLUSION

This traffic signal feasibility study has been conducted to determine the feasibility to signa lise the intersection of Princes Highway with Bunnings Tempe access driveway. This is largely due to the community response to the approved access arrangements and the push for a signa lised intersection that provides a safer traffic solution.

The findings of the study have concluded that there are no reasons that would preclude the provision of traffic signals at the Tempe Bunning's access driveway a ltogether, a nd its fea sibility is also dependent on many extemal factorsotherthan traffic engineering ortransport planning:
(2) Impacts to existing infrastructure within the road reserve, such as lighting, sewer, water, stomwater, electricity, gas etc. will need to be addressed through detailed engineering solutions/design.
(2) Safety findings in the RSA will need to be addressed through detailed engineering solutions/design.
(2) Transport for NSW will need to provide concurence to traffic signals noting a safer access for Bunnings customers under a signa lised arrangement via Princes Highway will negatively impact Princes Highway / Ikea's access driveway during the PM peak hour.
(2) Ikea will need to be consulted to traffic signals as their customers will experience greater delays when visiting or leaving the store during the PM peak hour, noting that the intersection operates at a LoSA in the approved PM scenario and a LoSF in the signalised concept scenario which is a significant impact on the operation of the IKEA access.
(2) Bunnings may need to submit a modification application, including potential amendments to their intemal carpark layout in order to provide a signalised access off Princes Highway that is simila r or an improvement to the concept scheme shown in this feasibility study. This concept design may be further altered with larger impacts to the proposed Bunnings building by providing for improved vehic le storage at the egress.
(2) The SIDRA 9 modelling of the approved Bunning access arrangement shows significant delays for vehicles tuming right into Bunnings. Specifically, the PM scenario shows that vehic les would have to wait for up to 72.9 seconds to tum right into Bunnings from Princes Highway under the assumption that drivers will find small gaps acceptable. Driver a nxiety

TR/AFFIX

Highway under the assumption that drivers will find small gaps a c ceptable. Driver a nxiety behaviours may result in choosing unsafe gapsin a high volume three-lane roadway to tum into the site causing safety concems. If drivers do not ta ke small gaps, extended delays will occurand this will encourage vehicles to enter the site through altemate routes.

TR/AFFIX

9. RECOMMENDATIONS

Thisfea sibility study hasfound the approved PrincesHighway and Bunningsaccess experiences substantial delays, and vehic les would have to wait on average 72.9 seconds in the PM peak hour before being able to find a suitable gap to tum right into Bunnings.

It is pertinent to note that this is also on the basis that the gap acceptance parameter within the SIDRA models for this right tum movements have been set as "high", however, even with drivers choosing sma llergaps whic h could potentially be dangerous, the intersection would still operate at a LoSF.

It is likely that extended delays will occur if drivers do not accept small a nd potentially unsafe gaps. This may result in vehic les attempting to find a nother route into Bunnings. With limited opportunity to tum around once at the point of the short right tum lane of the approved scenario, vehicles may merge back into the through lane and proceed to the next signalised intersection and use the IKEA access and roundabout within the site to tum around and approach the site from a southbound direction. Whilst the approved Bunnings development does not permit left tums into the site this will be diffic ult to enforce and with consideration of the delays that are expected from the SIDRA modelling of the approved scenario, vehic les may still attempt to tum left into the site.

In addition to all of the above, concems are raised for pedestrians/ cyc lists tra velling a long the south-ea stem side of the road when crossing the driveway in iscurrent a p proved form asdrivers will be preoccupied to find a suitable gap across three-lanes of traffic and may not have suffic ient time to observe and react to pedestrian orcyc list movements.

It isfurthernoted that there is a precedent fora signalised intersection treatment for fast-food premises (Hungry Jacks) located at 400 Princes Highway, St Peters. This is located along the same arterial road (Princes Highway) less than a kilometre away from the subject site and signals are used here to create a sufficient gap in traffic to allow left tums out of the access road. Generally left tums do not require signal treatment to allow for egress movements which demonstrates the signific ant volume of traffic along Princes Highway. It furtheremphasises the safety concemsregarding an unsignalised right tum into the Bunningssite if vehiclesa kilometre upstream have diffic ulty just tuming left out of the Hungry Jacks development without traffic being stopped by signals. This intersection is shown in the figure below for reference.

TR^AFIX

Figure 16: Intersection of Princes Highway and Ac cess Roadway for St Peters Hungry J acks
The feasibility study has also found that a concept signalised intersection layout sought by the local community and residents group would result in unacceptable impacts on the operation of the existing upstream IKEA access - showing a significant increase in the average delay in the PM peak hour and a change in the LoS of this intersection from a LoSA in the approved PM scenario to a LoSF in the signalised PM scenario. The upgrade of the approved Bunnings intersection into a signalised intersection will also have other challenges including signific ant economic implic ations on Bunnings over the approved access a rrangements.

Having considered all of the above, the following is recommended:
(1) At least two (2) additional independent Road Safety Audits (RSA) should be undertaken for the currently approved priority controlled right-tum access into Bunnings via Princes Highway at the detailed design stage to ensure current conditions and opinions of different experts are adequately considered.
(3) TFNSW to explore signa lising the right-tum entry into Bunningssite underthe curent a pproved a rangement to address potential safety concems.

TRAFFIX

(2) Consideration to remove the right-tum access into Bunnings altogether if safe access to Bunnings via Princes Highway cannot be feasibility achieved.

APPENDIX A

Bunning Tempe Approved Architectural Plans

NORTH ELEVATION - part
1:250

2 EAST ELEVATION - part
1:250

3 SOUTH ELEVATION
1:250

1 WEST ELEVATION
1:250

(A) $\frac{\text { MASS PLANTING-RETAINING WALL }}{1: 20 @ A}$
(E)

 famposimalal

$\frac{\text { PLANTER DETAIL }}{1: 20 @ A 1}$

-tomol as secineto cunvis swaanoetion

C TURF DETAIL C 1:10@A1

(B) MASS PLANTING

(G) TYPICAL TREE PIT DETAIL

(F) $\frac{\text { STREET TREE PIT IN PAVING }}{1: 20 @ A 1}$

SPECIFICATION NOTES

	-tupl	zoom
	phatmo	some
soll mix A		 C AODMIXINTO THE TO
	(Cociposiro wisume	${ }_{28}^{380}$
Soa mx B	 	\%

 Nome Mels
One EMEAS couch WTH AN EVEN Trocness of pour.

Bunnings

APPENDIX B

Concept Plan

APPENDIX C

Road Safety Audit

Traffix

Proposed signalised access to Tempe Bunnings develoment

Concept design road safety audit

Traffix

Proposed signalised access to Tempe Bunnings develoment

Concept design road safety audit

Report No
TRF-PROJ-0040-01 CD RSA TEMPE REV 1

Date

2/8/2022

This report has been prepared for Traffix.

CONTENTS

1 Introduction 2
1.1 Project and audit details 2
1.2 Responding to the audit report 3
1.3 Previous audits 3
2 Safety audit findings 4
3 Concluding statement. 13

Appendices

Appendix A
Road Safety Audit Checklist

1.1 Project and audit details

Details of the audit have been summarised in Table 1.
Table 1 Details of the road safety audit.

Audited project	Proposed signalised access to proposed Bunnings development, on the eastern side of Princes Highway, to the north of Smith Street, Tempe.
Client/ contact	Thomas Yang Senior Engineer Traffix Ph: (02) 83848700 / 0433438966 E: thomas.yang@traffix.com.au
Audit type	Concept design road safety audit.
Purpose	A concept design road safety audit was required so that safety issues could be considered and addressed in the refinement of the design.
Background	A new Bunnings Warehouse is proposed on the eastern side of Princes Highway to the north of Smith Street, in Tempe. As part of this development, a new signalised access is proposed which will stem off the eastern side of Princes Highway. This side road will allow left and right turns out of the site, as well as right-turns into the site. Inbound left-turns to the site will be prohibited. These movements would need to use the alternative access via Smith Street. A concept design has been prepared and was required to be formally reviewed via a road safety audit. An extract of this concept is shown on the front cover of this report. This report details the processes and findings of the concept design road safety audit.
Scope of project/ audit	The following plan was presented to the audit team and was considered to be the auditable material and scope: - Project 22.256 drawing SK. 01 revision A.
Audit team details	Damien Chee, level 3 (lead) road safety auditor - Registration number: RSA-020094. Linda Chee, level 2 road safety auditor -Registration number RSA-02-1069.
Audit methodology	The audit was undertaken using the following methodology: - The concept design was reviewed on $1 / 8 / 2022$. - A site inspection was carried out on $1 / 8 / 2022$. This was only for familiarisation purposes, to understand the pre-existing road, traffic and land use conditions, and to contextualise the setting/ environment that the intersection works would be delivered in. - The road safety audit findings have been documented in this report in accordance with the NSW Centre for Road Safety's Guidelines for Road Safety Audit Practices (2011). The audit findings are documented in Section 2. - This report includes completed road safety audit checklist as sourced from the Austroads Guide to Road Safety Part 6A: Implementing Road Safety Audits.
Material supplied	See scope of audit.
Meeting and assessment details	Review of plans on 1/8/2022. Site inspection carried out on 1/8/2022.

1.2 Responding to the audit report

Road safety audits provide the opportunity to highlight potential road safety problems and have them formally considered by the project manager in conjunction with all other project considerations.

The responsibility for the project rests with the project manager, not with the auditor. The project manager is under no obligation to accept the audit findings. Also, it is not the role of the auditor to agree to, or approve the project manager's responses to the audit.

1.3 Previous audits

There were no previous road safety audit reports of direct relevance to this project that were issued to the audit team.

2 Safety audit findings

The road safety audit findings are documented in Table 2.
Table 2
Road safety audit findings.

| Ref | Location/ priority | Road safety audit finding |
| :---: | :--- | :--- | :--- | :--- |
| 1 | Conflict between
 outbound left-turn
 from IKEA
 driveway
 outbound
 movements from
 Bunnings. | Two fundamental problems with the design are that (1) the IKEA driveway and the Bunnings driveway are too close to each other and (2)
 the IKEA driveway remains as a priority-controlled intersection despite being within a signal-controlled intersection. These two
 fundamental problems would lead to the following crash conflict and risk.
 The outbound traffic in the IKEA driveway, presumably restricted to left-turns only, would need to select gaps in the southbound direction
 of Princes Highway when egressing from this property. During the signal phase when northbound-southbound traffic on Princes Highway
 are held on red signal (all red arrow-stubs), and the outbound traffic from Bunnings is given the green signal display, this would be an
 opportune time for any outbound traffic from IKEA to egress from this property (see purple arrow). Furthermore, this traffic (not under any
 signalised control) would be able to legally make this egressing movement. As shown below, this would create an obvious crash conflict
 with the outbound traffic from Bunnings. Many of these outbound drivers from Bunnings would not expect a conflict to emerge from the
 adjacent driveway in this manner.
 As described in items 2a and 2 b , the outbound traffic from IKEA would also be under priority control (not signalised control) and would not
 be adequately controlled against north-south pedestrian movements on the signalised crossing. This would lead to distinct vehicle-
 pedestrian crash conflicts as well. |

${ }^{1}$ This is not the main vehicular access-egress to IKEA. Rather, it is a secondary and lower-volume driveway to the IKEA administration building

Ref	Location/ priority	Road safety audit finding	Priority
2a	Poor legibility in the priority and control rules for pedestrians on the eastern signalised crossing.	Item 1 discussed the fundamental problem of having a signal-controlled driveway to Bunnings immediately adjacent to a priority controlled driveway to IKEA. This will also reduce the legibility of the pedestrian crossing and the relative priority rules. For example, outbound traffic from the IKEA driveway would need to adhere to priority rules when egressing. They would need to give way to southbound vehicles on Princes Highway as well as pedestrians on the north-south crossing. However, this is a give way control rather than the outbound traffic being traffic signal controlled (ie. held on red and released on green). By contrast, the outbound traffic from Bunnings would be controlled by signals so there should be less ambiguity regarding which road user has priority (ie. outbound vehicles or crossing pedestrians). By having two differing priority-systems side-by-side, the crossing pedestrian would be subjected to differing degrees of protection. On one hand, they would be better protected against outbound traffic from Bunnings due to the signal control and the fact that this is less ambiguous and offers more clear-cut time-separation between the conflicting road user movements. On the other hand, they would be subjected to a give way control at the IKEA driveway where drivers may make poor decisions without the aid of traffic signals. Pedestrians crossing in the northbound direction would be most at risk. Since the outbound traffic from IKEA is restricted to left-turns only, these drivers would tend to look to their right towards the oncoming southbound traffic on Princes Highway to judge for gaps. By doing so, they are at higher risk of not noticing a pedestrian approaching from their left (ie. a northbound pedestrian approaching from the south). This could lead to a vehicle-pedestrian crash. Left: The outbound driver in the IKEA driveway (purple vehicle) is subjected to a give way priority rule. These drivers would tend to look to their right (north) to check for gaps in the southbound traffic stream of Princes Highway. By doing so, they may not notice pedestrians approaching from their left (from the south).	High

Ref	Location/ priority	Road safety audit finding	Priority
2b	Poor legibility in the priority and control rules for pedestrians on the eastern signalised crossing.	Further to item 2a, pedestrians are likely to use the small gap between the two driveways as a refuge point, especially when crossing illegally (during the "don't walk" display). This area is small and not suitable as a pedestrian refuge area. Left: Pedestrians are likely to use the small area between the two driveways as a makeshift refuge point.	High

| Ref | Location/ priority | Road safety audit finding |
| :---: | :--- | :--- | :--- |
| 3 | Filtered right-turns
 into the Bunnings
 driveway. | At the concept stage with no TCS plan prepared, it is unclear whether filtered right turns will be permitted by northbound traffic into
 Bunnings (orange arrow). This is considered to be a very high risk movement. The northbound right-turning driver would need to detect
 and select gaps in, and give way to the following traffic streams:
 -
 - Traffic in lane 3 southbound (lanes are numbered below).
 - Traffic in lane 2 southbound, which may be visually obscured by traffic in lane 3.
 - Traffic in lane 1 southbound, which may be visually obscured by traffic in lanes 2 and 3.
 - Pedestrians crossing the eastern signalised leg, which may be obscured by traffic in lanes 1, 2 and 3. |
| - Outbound left-turning vehicles from the IKEA driveway. Note that this conflict would also exist with a fully controlled right-turn since the | | |
| outbound left-turning driver from IKEA would only need to adhere to a give way rule (ie. they are not traffic signal controlled). | | |
| With the multitude of conflicting movements, northbound right-turning drivers are likely to make poor gap selections with consequential | | |
| crash risk. As such, filtered right-turns are not recommended. | | |

| Ref | Location/ priority | Road safety audit finding |
| :---: | :--- | :--- | :--- | :--- |
| 4 | Illegal right-turns
 into and out of the
 IKEA driveway. | The proposed driveway to Bunnings would be positioned immediately adjacent to the driveway to the IKEA administration building. As
 shown below, due to the hold line at X, the IKEA driveway actually falls within the traffic-controlled area of the intersection. The audit team
 anticipates that there will be occasional illegal right-turn movements into and out of the IKEA driveway. For example, a northbound vehicle
 could turn right into the IKEA driveway under the guise of an intended right-turn into the Bunnings driveway (see blue arrow). Since the
 hold line X keeps queued traffic out of the way of the IKEA driveway, there would tend to be an uninhibited passage to IKEA.
 Similarly, there could be illegal right turns out of the IKEA driveway as per the orange arrow. This is especially since the proper alternative
 route would be via (i) a left-turn into Princes Highway southbound, (ii) a left-turn into Smith Street, (iii) a u-turn/ three-point turn in Smith
 Street and (iv) an outbound right-turn from Smith Street. This alternative route is circuitous and time-consuming. Any illegal right-turn
 movements from the IKEA driveway would also increase the risk of impacts with the median nose (red star) including any traffic signal
 posts and signs.
 The IKEA driveway is currently a left-in-left-out T intersection and is assumed to retain the same access restrictions under the proposed
 scenario. |
| and | | |

Ref	Location/ priority	Road safety audit finding	Priority
5	NO LEFT TURN rule from Princes Highway to Bunnings.	The design indicates that there will be a NO LEFT TURN rule for southbound traffic on Princes Highway to the Bunnings site. The audit team notes the following issues: - This is a very unrealistic expectation, and a high degree of non-compliance would be expected. Left-turn bans are extremely rare since they are the least conflicted/ opposed movement. The alternative access route via Smith Street is more circuitous and timeconsuming. As shown in the right-hand image, there is a brick wall separating both driveways. Any illegal left-turns into the Bunnings site could lead to vehicle impacts with this wall. Alternatively, there could be head-on crashes with outbound traffic in the Bunnings driveway. - Since a left-turn ban would apply to the Bunnings driveway, it stands to reason that there will not be any left-turn signal controls to safeguard pedestrians (since this movement should not happen anyway, assuming 100\% compliance). Without any left-turn control, and since the driveway to IKEA remains a priority-controlled intersection, this would allow for uncontrolled left-turns into the IKEA driveway. Without any left-turn arrow controls, this could increase the risk of left-turn on pedestrian crashes involving left-turn movements into IKEA. Contrastingly, there is no legible method for controlling the left-turns into the IKEA driveway. If a left-turn arrow aspect is included with the signal personality, then the release of the red-arrow hold (therefore allowing left-turns into the IKEA driveway), could be misinterpreted as a release for southbound traffic to also turn left into Bunnings (which would be illegal). - The NO LEFT TURN sign could be misinterpreted as a rule that also applies to the IKEA driveway. Clearly this is not the case as there is no other legal method of entering that driveway. Left: Extract from the design showing the intended NO LEFT TURN rule prohibiting inbound left-turns into the Bunnings site. Right: The existing conditions showing the two driveways side-by-side and the brick wall separating these.	Medium

Ref	Location/ priority	Road safety audit finding	Priority
6	Outbound left-turn lane from Bunnings.	The design indicates that a short left-turn lane will be provided for outbound traffic in the Bunnings driveway. This will be very ineffective in servicing outbound left-turning traffic and is likely to have a poor utilisation rate. The audit team notes the following issues: - In many situations, left-turning drivers will not be able to access this lane due to the queue in the right-turn lane extending back to the east. Even a one-car queue may block access to the left-turn lane. - Left-turning vehicles that are trapped in the right-turn lane and in queue are likely to remain in lane 2 even when making their left-turn movement. Many drivers would be reluctant to move into lane 1 at the "last second" to make this left-turn movement. This is a case of poor utilisation of lane 1, and this driveway would perform very similar to if there was only one lane provided (shared by left and rightturning traffic). - Further to the previous points, the low utilisation and blocked access to the left-turn lane would waste much cycle time. For example, when the northbound right-turn is given a green arrow display, this would typically be accompanied by an outbound left-turn green arrow display. However, if "would be" left-turning vehicles cannot access this short lane, the entire signal phase would be wasted and there would be no throughput from the outbound left-turn lane. Whilst many of these issues are traffic management and operation related, there are road safety side effects as well. For example, extensive queuing and rear-end crash risks, unnecessary delays leading to driver frustration and risk-taking behaviour.	Low

| Ref | Location/ priority | Road safety audit finding | Priority |
| :---: | :--- | :--- | :--- | :--- |
| 7 | DO NOT QUEUE
 ACROSS
 INTERSECTION
 signs. | G9-237 DO NOT QUEUE ACROSS INTERSECTION signs are proposed on the eastern and western sides of Princes Highway. However,
 these are not appropriately placed. The eastern sign is placed midway along the control area of the intersection. It really ought to be
 placed at the start of, or upstream of the start of, the control area (such as point A). The western sign would be too far to the right to be
 effective as a regulatory sign. It would be better placed at point B such that it is visible by drivers at the hold line as well as those moving
 into the intersection. | |
| Left: The DO NOT QUEUE ACROSS | | | |
| INTERSECTION signs are poorly placed. | | | |

| Ref | Location/ priority | Road safety audit finding |
| :---: | :--- | :--- | :---: | :---: |
| 8 | Alignment of
 southbound lanes. | The three southbound lanes will have a slight horizontal kink in the control area of the intersection. As such, drivers in each lane would be
 required to make minor steering adjustments when in the control area of the intersection. Whilst this is a relatively minor steering
 requirement, consideration should be given to revising the lane alignment such that the approach lanes match up with the departure lane
 alignments.
 It should be noted that in the existing, pre-project situation, the approach lanes match up with the departure lane alignments and the road
 is straight. |

3 Concluding statement

DC Traffic Engineering has undertaken a concept design road safety audit of this project in accordance with the methodology outlined in Section 1 of this report.

Issues identified have been noted in this report for the Project Manager to review, assess, and where appropriate, make the necessary recommendations to improve safety.

Damien Chee
Audit Team Leader
DC Traffic Engineering Pty Ltd

Appendix A

Road Safety Audit Checklist

Issue	Comment
2.1 General topics	
1 Changes since previous audit - Do the conditions for which the scheme was originally designed still apply? (eg. no changes to the surrounding network, area activities or traffic mix) - Has the general form of the project design remained unchanged since previous audit (if any)?	There were no previous road safety audit reports issued to the audit team.
2 Drainage - Will the scheme drain adequately? - Has the possibility of surface flooding been adequately addressed, including overflow from surrounding or intersecting drains and water courses?	Yes.
3 Climatic conditions - Has consideration been given to weather records or local experience which may indicate a particular problem? (eg. snow, ice, wind, fog).	Yes.
4 Landscaping - If any landscaping proposals are available, are they compatible with safety requirements (eg. sight lines and hazards in clear zones)?	Yes.
5 Services - Does the design adequately deal with buried and overhead services (especially in regard to overhead clearances, etc)? - Has the location of fixed objects or furniture associated with services been checked, including the position of poles?	Services adjustment plans not provided.
6 Access to property and developments - Can all accesses be used safely? (entry and exit/merging). - Is the design free of any downstream or upstream effects from accesses, particularly near intersections? - Have rest areas and truck parking accesses been checked for adequate sight distance, etc.?	All issues were with respects to the property access.
7 Adjacent developments - Does the design handle accesses to major adjacent generators of traffic and developments safely? - Is the drivers' perception of the road ahead free of misleading effects of any lighting or traffic signals on an adjacent road?	Yes.
8 Emergency vehicles and access - Has provision been made for safe access and movements by emergency vehicles? - Does the design and positioning of medians and vehicle barriers allow emergency vehicles to stop \& turn without unnecessarily disrupting traffic?	Yes.

[^0]| Issue | Comment |
| :---: | :---: |
| 9 Future widening and/or realignments
 - If the scheme is only a stage towards a wider or dual carriageway is the design adequate to impart this message to drivers? (Is the reliance on signs minimal/appropriate, rather than excessive?)
 - Is the transition between single and dual carriageway (either way) handled safely? | Unknown. |
| 10 Staging of the scheme
 - If the scheme is to be staged or constructed at different times:
 - Are the construction plans and program arranged to ensure maximum safety?
 - Do the construction plans and program include specific safety measures, signing; adequate transitional geometry; etc. for any temporary arrangements? | Unknown. |
| 11 Staging of the works
 - If the construction is to be split into several contracts, are they arranged safely? | Unknown. |
| 12 Maintenance
 - Can maintenance vehicles be safely located? | Yes. Similar to existing conditions. |
| 2.2 Design issues (general) | |
| 1 Design standards
 - Is the design speed and speed limit appropriate (eg. consider the terrain; function of the road)?
 - Has the appropriate design vehicle and check vehicle been used? | Yes. |
| 2 Typical cross sections
 - Are lane widths, shoulders, medians and other cross section features adequate for the function of the road?
 - Is the width of traffic lanes and carriageway suitable in relation to: -
 - Alignment?
 - Traffic volume?
 - Vehicle dimensions?
 - The speed environment?
 - Combinations of speed and traffic volume?
 - Are overtaking/climbing lanes provided if needed?
 - Have adequate clear zones been achieved? | The short left-turn lane in the new access will lack utilisation. |

Issue	Comment
3 The effect of cross sectional variation - Is the design free of undesirable variations in cross section design? - Are crossfalls safe? (particularly where sections of existing highway have been utilised or there have been compromises to accommodate accesses, etc.) - Does the cross section avoid unsafe compromises such as narrowings at bridge approaches or past physical features?	See previous.
4 Roadway layout - Are all traffic management features designed so as to avoid creating unsafe conditions? - Is the layout of road markings and reflective materials able to deal satisfactorily with changes in alignment? (particularly where the alignment may be substandard.)	Fundamental problem with having two accesses side-by-side and with two differing control methods.
5 Shoulders and edge treatment - Are the following safety aspects of shoulder provision satisfactory: - Provision of sealed or unsealed shoulders? - Width and treatment on embankments? - Cross fall of shoulders? - Are the shoulders likely to be safe if used by slow moving vehicles or cyclists? - Are any rest areas and truck parking areas safely designed?	Kerbed road.
6 Effect of departures from standards or guidelines - Any approved departures from standards or guidelines: is safety maintained? - Any hitherto undetected departures from standards: is safety maintained?	Yes.
2.3 Alignment details	
1 Geometry of horizontal and vertical alignment - Does the horizontal and vertical design fit together correctly? - Is the design free of visual cues that would cause a driver to misread the road characteristics (eg. visual illusions, subliminal delineation such as lines of trees, poles, etc.)? - Does the alignment provide for speed consistency?	Horizontal kink in southbound lanes raised.

[^1]| Issue | Comment |
| :---: | :---: |
| 2 Visibility; sight distance
 - Are horizontal and vertical alignments consistent with the visibility requirements?
 - Will the design be free of sight line obstructions due to:
 - Safety fences or barriers?
 - Boundary fences?
 - Street furniture?
 - Parking facilities?
 - Signs?
 - Landscaping?
 - Bridge abutments?
 - Parked vehicles in laybys or at the kerb?
 - Queued traffic?
 - Are railway crossings, bridges and other hazards all conspicuous?
 - Is the design free of any other local features which may affect visibility? | Yes. |
| 3 New/existing road interface
 - Does the interface occur well away from any hazard? (eg. a crest, a bend, a roadside hazard or where poor visibility/distractions may occur.)
 - If carriageway standards differ, is the change effected safely?
 - Is the transition where the road environment changes (eg. urban to rural; restricted to unrestricted; lit to unlit) Is it done safely?
 - Has the need for advance warning been considered? | Yes. |
| 4 'Readability' of the alignment by drivers
 - Will the general layout, function and broad features be recognised by drivers in sufficient time?
 - Will approach speeds be suitable and can drivers correctly track through the scheme? | Yes. |
| 2.4 Intersections | |

Issue	Comment
1 Visibility to and visibility at intersections	
- Are horizontal and vertical alignments at the intersection or	
on the approaches to the intersection consistent with the	
visibility requirements?	
- Will drivers be aware of the presence of the intersection	
(especially on the minor road approach)?	
- Will the design be free of sight line obstructions due to:	
- Safety fences or barriers?	
- Boundary fences?	
- Street furniture?	
- Parking facilities?	
- Signs?	
- Landscaping?	
- Bridge abutments?	
- Are railway crossings, bridges and other hazards near	
intersections conspicuous?	
- Will the design be free of any local features which adversely	
affect visibility?	
- Will intersection sight lines be obstructed by permanent or	
temporary features such as parked vehicles in laybys, or by	
parked or queued traffic generally?	

2 Layout, including the appropriateness of type

- Is the type of intersection selected (cross roads, T, roundabout, signalised, etc.) appropriate for the function of the two roads?
- Are the proposed controls (Give Way, Stop, Signals, etc.) appropriate for the particular intersection?
- Are junction sizes appropriate for all vehicle movements?
- Are the intersections free of any unusual features which could affect road safety?
- Are the lane widths and swept paths adequate for all vehicles?
- Is the design free of any upstream or downstream geometric features which could affect safety? (eg. merging of lanes.)
- Are the approach speeds consistent with the intersection design?
- Where a roundabout is proposed:
- Have pedal cycle movements been considered?
- Have pedestrian movements been considered?
- Are details regarding the circulating carriageway sufficient?

Fundamental problem with having two accesses side-by-side and with two differing control methods.

[^2]| Issue | Comment |
| :---: | :---: |
| 3 Readability by drivers
 - Will the general type, function and broad features be perceived correctly by drivers?
 - Are the approach speeds and likely positions of vehicles as they track through the scheme safe?
 - Is the design free of sunrise or sunset problems which may create a hazard for motorists? | Yes. |
| 2.5 Special road users | |
| 1 Adjacent land
 - Will the scheme be free of adverse effects from adjacent activity and intensity of land use? (If not, what special measures are needed? | Yes. |
| 2 Pedestrians
 - Have pedestrian needs been satisfactorily considered?
 - If footpaths are not specifically provided, is the road layout safe for use by pedestrians (particularly at blind corners or on bridges)?
 - Are pedestrian subways or footbridges sited to provide maximum use? (i.e. Is the possibility of pedestrians crossing at grade in their vicinity minimised?)
 - Has specific provision been made for pedestrian crossings, school crossings or pedestrian signals?
 - Where present, are these facilities sited to provide maximum use with safety?
 - Are pedestrian refuges/kerb extensions provided where needed?
 - Has specific consideration been given to provision required for special groups (eg. young, elderly, disabled, deaf or blind)? | Pedestrians on the eastern side of the crossing will be signal controlled, but will be subjected to two traffic streams that are controlled by entirely different means. |
| 3 Cyclists
 - Have the needs of cyclists been satisfactorily considered, especially at intersections?
 - Have cycle lanes been considered?
 - Are all cycleways of standard or adequate design?
 - Where a need for shared pedestrian/cycle facilities exists, have they been safely treated?
 - Where cycleways terminate at intersections or adjacent to the carriageway, has the transition treatment been handled safely?
 - Have any needs for special cycle facilities been satisfactorily considered? (eg. cycle signals) | Yes. |

Issue	Comment
4 Motorcyclists - Has the location of devices or objects which might destabilise a motorcycle been avoided on the road surface? - Will warning or delineation be adequate for motorcyclists? - Has barrier kerb been avoided in high speed areas? - In areas more likely to have motorcycles run off the road is the roadside forgiving or safely shielded?	Yes.
5 Equestrians and stock - Have the needs of equestrians been considered, including the use of verges or shoulders and rules regarding the use of the carriageway? - Can underpass facilities be used by equestrians/stock?	NA.
6 Freight - Have the needs of truck drivers been considered, including turning radii and lane widths?	Most issues will affect trucks.
7 Public transport - Has public transport been catered for? - Have the needs of public transport users been considered? - Have the manoeuvring needs of public transport vehicles been considered? - Are bus stops well positioned for safety?	Yes.
8 Road maintenance vehicles - Has provision been made for road maintenance vehicles to be used safely at the site?	Yes.
2.6 Signs and lighting	
1 Lighting - Is this project to be lit? Will safety be maintained if the project is not lit? - Is the design free of features which make illuminating sections of the road difficult (eg. Shadow from trees or overbridges)? - Has the question of siting of lighting poles been considered as part of the general concept of the scheme? - Are frangible or slip-base poles to be provided? - Are any special needs created by ambient lighting? Will safety be maintained if special treatments are not provided? - Have the safety consequences of vehicles striking lighting poles (of any type) been considered?	Assumed to be similar to existing.

[^3]| Issue | Comment |
| :---: | :---: |
| 2 Signs
 - Are signs appropriate for their location?
 - Are signs located where they can be seen and read in adequate time?
 - Will signs be readily understood?
 - Are signs located so that visibility to and from accesses and intersecting roads is maintained?
 - Are signs appropriate to the driver's needs (eg. destination signs, advisory speed signs, etc.)?
 - Have the safety consequences of vehicles striking sign posts been considered?
 - Are signs located so that drivers' sight distance is maintained?
 - Any signs to be located in the clear zone: are they frangible or adequately shielded by a crash barrier? | Signage not included on the plans since these were only concept level plans. |
| 3 Marking and delineation
 - Has the appropriate standard of delineation and marking been adopted?
 - Are the proposed markings consistent with the works in the adjoining section of the route?
 - Are the previous/adjacent markings to be upgraded? If not, will safety be maintained? | Southbound lanes will have a horizontal kink. |
| 2.7 Traffic management | |
| 1 Traffic flow and access restrictions
 - Can traffic volumes from the proposed scheme be safely accommodated on existing sections of road?
 - Has parking provision and parking control been adequately considered?
 - Can any turn bans be implemented without causing problems at adjacent intersections?
 - Has the effect of access to future developments been considered?
 - Any traffic diverting to other roads (eg. to avoid a traffic control device): is safety maintained? | Traffic management issues identified with short left-turn lane from Bunnings. |

Issue	Comment
2 Overtaking and merges	
- Is overtaking sight distance and stopping distance adequate?	
- Have suitable shoulder widths been provided at lane drop	
\quad merges?	
- Have standard signs and markings been provided for any	NA. Multi-lane road.
\quadlane drop? - Has adequate sight distance been provided to any lane drop? - Are shoulders wide enough opposite access points and intersections?	
3 Rest areas and stopping zones	
Are there sufficient roadside stopping areas, rest areas and truck	
parking areas?	
Are any entries and exits to rest areas or truck parking areas	
safe?	

[^4]
APPENDIX D

SIDRA Movement Summaries

NETWORK LAYOUT

마 Network: N101 [Approved AM (Network Folder: Approved)]
New Network
Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.
${ }^{N}$

SITES IN NETWORK		
Site ID	CCG ID	Site Name
日 101	NA	101 AM APPROVED Princes Hwy, Smith St \& Union St
∇_{102}	NA	102 AM APPROVED Princes Hwy \& Brooklyn St
∇_{103}	NA	103 AM APPROVED Princes Hwy \& Ikea (HV) DW
∇_{104}	NA	104 AM APPROVED Princes Hwy \& Foreman St
日105	NA	105 AM APPROVED Princes Hwy \& Ikea Access Road
∇_{106}	NA	106 AM APPROVED Princes Hwy \& Bunnings Access

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:19:42 PM
Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 AM APPROVED Princes Hwy,
뭄 Network: 5 [Approved AM (Network Folder: Smith St \& Union St (Site Folder: Approved AM

Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	27	98
Green Time (sec)	21	65	16
Phase Time (sec)	27	71	22
Phase Split	23%	59%	18%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 AM APPROVED Princes Hwy \&
마 Network: 5 [Approved AM (Network Folder: Ikea Access Road (Site Folder: Approved AM Approved)] Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	26	117	14
Green Time (sec)	85	11	6
Phase Time (sec)	91	17	12
Phase Split	76%	14%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:32:41 AM Project: T:ISynergy \mid Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 222.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Aroject: $22.256 m 01 v 03$ TRAFFIX Bunnings Tempe
Feasibility Study Template: Movement Summaries

Site: 101 [101 AM APPROVED Princes Hwy, 매 Network: 5 [Approved AM (Network Folder: Smith St \& Union St (Site Folder: Approved AM Approved)] - Network)]

Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WSS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	CK OF UE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
1 L2	29	7.1	29	7.1	0.023	9.1	LOS A	0.5	3.4	0.28	0.59	0.28	36.0
2 T1	15	0.0	15	0.0	* 0.170	49.6	LOS D	2.2	16.2	0.92	0.72	0.92	23.0
3 R2	67	7.8	67	7.8	0.170	54.8	LOS D	2.2	16.2	0.92	0.72	0.92	14.0
Approach	112	6.6	112	6.6	0.170	42.1	LOS C	2.2	16.2	0.75	0.69	0.75	19.0
East: Princes Highway (NE)													
4 L2	47	0.0	47	0.0	0.045	9.8	LOS A	0.7	5.2	0.33	0.62	0.33	37.9
$5 \quad$ T1	796	0.0	796	0.0	* 0.754	52.7	LOS D	15.7	109.7	1.00	0.89	1.08	10.7
Approach	843	0.0	843	0.0	0.754	50.3	LOS D	15.7	109.7	0.96	0.87	1.04	11.6
West: Princes Highway (SW)													
10 L2	33	3.2	33	3.2	0.702	12.6	LOS A	29.1	211.6	0.54	0.51	0.54	41.5
11 T1	2941	4.8	2941	4.8	0.702	7.7	LOS A	29.1	212.0	0.55	0.54	0.55	28.2
12 R 2	54	0.0	54	0.0	* 0.702	14.8	LOS B	24.2	175.9	0.59	0.61	0.59	38.4
Approach	3027	4.7	3027	4.7	0.702	7.9	LOS A	29.1	212.0	0.56	0.54	0.56	28.9
All Vehicles	3982	3.7	3982	3.7	0.754	17.8	LOS B	29.1	212.0	0.65	0.62	0.66	19.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 102 [102 AM APPROVED Princes Hwy \& \quad Network: 5 [Approved AM (Network Folder: Brooklyn St (Site Folder: Approved AM -

Intersection: Princes Hwy \& Brooklyn St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { I HV] } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	OF JE Dist] m	Prop. Que	EffectiveAv Stop Rate	ver. No Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	954	10.3	954	10.3	0.281	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	954	10.3	954	10.3	0.281	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7
North: Brooklyn Street (NW)													
7 L2	24	4.3	24	4.3	0.036	8.4	LOS A	0.1	1.0	0.56	0.71	0.56	40.8
Approach	24	4.3	24	4.3	0.036	8.4	LOS A	0.1	1.0	0.56	0.71	0.56	40.8
West: Princes Highway (SW)													
10 L2	18	11.8	18	11.8	0.399	5.0	LOS A	0.0	0.0	0.00	0.01	0.00	55.9
11 T1	2994	4.9	2994	4.9	0.399	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.4
Approach	3012	4.9	3012	4.9	0.399	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.3
All Vehicles	3989	6.2	3989	6.2	0.399	0.1	NA	0.1	1.0	0.00	0.01	0.00	58.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 103 [103 AM APPROVED Princes Hwy \& \quad 무 Network: 5 [Approved AM (Network Folder: Ikea (HV) DW (Site Folder: Approved AM -

Intersection: Princes Hwy \& Ikea (HV) DW
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.001	2.2	LOSA	0.0	0.0	0.36	0.30	0.36	24.2
Approach	1	0.0	1	0.0	0.001	2.2	LOS A	0.0	0.0	0.36	0.30	0.36	24.2
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.172	2.1	LOS A	0.0	0.0	0.00	0.00	0.00	56.8
$5 \quad$ T1	939	10.4	939	10.4	0.172	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	940	10.4	940	10.4	0.172	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.6
West: Princes Highway (SW)													
11 T1	2987	4.9	2987	4.9	0.527	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2987	4.9	2987	4.9	0.527	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3928	6.2	3928	6.2	0.527	0.0	NA	0.0	0.0	0.00	0.00	0.00	58.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 104 [104 AM APPROVED Princes Hwy \& \quad Network: 5 [Approved AM (Network Folder: Foreman St (Site Folder: Approved AM -

Intersection: Princes Hwy \& Foreman St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM/ } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	ND NS HV] \%	ARR FLO [Total veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	CK OF JE Dist] m	Prop. Que	$\begin{aligned} & \text { EffectiveAl } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	939	10.4	939	10.4	0.171	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	939	10.4	939	10.4	0.171	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North: Foreman Street (NW)													
7 L2	31	3.4	31	3.4	0.072	11.8	LOS A	0.2	1.6	0.73	0.87	0.73	38.0
Approach	31	3.4	31	3.4	0.072	11.8	LOS A	0.2	1.6	0.73	0.87	0.73	38.0
West: Princes Highway (SW)													
11 T1	2987	4.9	2987		0.527	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2987	4.9	2987		0.527	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3957	6.2	3957	6.2	0.527	0.1	NA	0.2	1.6	0.01	0.01	0.01	57.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 AM APPROVED Princes Hwy \& Ikea Access Road (Site Folder: Approved AM -

마 Network: 5 [Approved AM (Network Folder: Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text {] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ m \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	9	0.0	9	0.0	0.029	45.9	LOS D	0.4	3.1	0.83	0.66	0.83	6.7
3 R2	13	41.7	13	41.7	* 0.076	65.5	LOSE	0.4	3.5	0.97	0.66	0.97	12.2
Approach	22	23.8	22	23.8	0.076	57.1	LOS E	0.4	3.5	0.91	0.66	0.91	10.6
East: Princes Highway (NE)													
4 L2	22	28.6	22	28.6	0.017	8.0	LOS A	0.2	2.0	0.19	0.56	0.19	39.3
$5 \quad$ T1	928	11.6	928	11.6	0.238	6.1	LOS A	6.0	46.5	0.37	0.32	0.37	41.9
Approach	951	12.0	951	12.0	0.238	6.1	LOS A	6.0	46.5	0.36	0.33	0.36	41.8
West: Princes Highway (SW)													
11 T1	2959	5.0	2959	5.0	* 0.617	2.7	LOSA	17.2	125.9	0.32	0.30	0.32	53.9
12 R 2	43	0.0	43	0.0	0.110	8.3	LOS A	0.5	3.7	0.26	0.62	0.26	34.9
Approach	3002	4.9	3002	4.9	0.617	2.7	LOS A	17.2	125.9	0.32	0.31	0.32	53.6
All Vehicles	3975	6.7	3975	6.7	0.617	3.9	LOS A	17.2	125.9	0.34	0.31	0.34	50.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

∇ Site: 106v [106 AM APPROVED Princes Hwy \& Bunnings Access (Site Folder: Approved AM
 무 Network: 5 [Approved AM (Network Folder: - Network)]

Intersection: Princes Hwy \& Bunnings Access

Period: AM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & 1 \% \end{aligned}$	Deg. Satn v/c	Aver Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	K OF J Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Bunnings Access													
1 L2	15	0.0	15	0.0	0.014	6.7	LOS A	0.0	0.3	0.35	0.58	0.35	49.0
Approach	15	0.0	15	0.0	0.014	6.7	LOS A	0.0	0.3	0.35	0.58	0.35	49.0
East: Princes Highway (NE)													
$5 \quad$ T1	886	11.0	886	11.0	0.162	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	886	11.0	886	11.0	0.162	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West: Princes Highway (SW)													
11 T1	2987	4.9	2987	4.9	0.527	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
12 R 2	6	0.0	6	0.0	0.015	9.8	LOS A	0.0	0.3	0.65	0.77	0.65	24.0
Approach	2994	4.9	2994	4.9	0.527	0.0	NA	0.0	0.3	0.00	0.00	0.00	57.4
All Vehicles	3895	6.2	3895	6.2	0.527	0.1	NA	0.0	0.3	0.00	0.00	0.00	57.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 PM APPROVED Princes Hwy, Network: 6 [Approved PM (Network Folder: Smith St \& Union St (Site Folder: Approved PM

Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	75	98
Green Time (sec)	69	17	16
Phase Time (sec)	75	23	22
Phase Split	63%	19%	18%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 PM APPROVED Princes Hwy \& Ikea Access Road (Site Folder: Approved PM -

머 Network: 6 [Approved PM (Network Folder: Approved)] Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	94	70	82
Green Time (sec)	90	6	6
Phase Time (sec)	96	12	12
Phase Split	80%	10%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase

\Rightarrow Normal Movement	\Rightarrow Permitted/Opposed
\Rightarrow Slip/Bypass-Lane Movement	\Rightarrow Opposed Slip/Bypass-Lane
Stopped Movement	\checkmark Turn On Red
Other Movement Class (MC) Running	\Rightarrow Undetected Movement
\Rightarrow Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
Other Movement Class (MC) Stopped	- Phase Transition Applied

Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:34:31 AM Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 V 03 TRAFFIX Bunnings Tempe
Feasibility Study
Template: Movement Summaries

Site: 101 [101 PM APPROVED Princes Hwy, 마 Network: 6 [Approved PM (Network Folder: Smith St \& Union St (Site Folder: Approved PM

Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARRI FLO [Total veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{E} \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \\ \hline \end{gathered}$	K OF JE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
1 L2	72	1.5	72	1.5	0.117	34.1	LOS C	2.9	20.4	0.73	0.72	0.73	21.9
2 T1	56	0.0	56	0.0	* 0.349	51.1	LOS D	5.1	35.7	0.95	0.75	0.95	22.9
3 R2	131	0.0	131	0.0	0.349	55.7	LOS D	5.1	35.7	0.95	0.77	0.95	13.8
Approach	258	0.4	258	0.4	0.349	48.7	LOS D	5.1	35.7	0.89	0.75	0.89	18.2
East: Princes Highway (NE)													
4 L2	84	5.0	84	5.0	0.180	36.3	LOS C	3.6	26.1	0.78	0.73	0.78	21.5
$5 \quad$ T1	2737	2.7	2737	2.7	* 0.840	22.8	LOS B	17.1	122.4	0.87	0.82	0.89	20.1
Approach	2821	2.8	2821	2.8	0.840	23.2	LOS B	17.1	122.4	0.86	0.81	0.88	20.2
West: Princes Highway (SW)													
10 L2	32	6.7	32	6.7	0.504	10.0	LOSA	9.7	70.0	0.34	0.33	0.34	44.2
11 T1	1260	3.3	1260	3.3	0.504	9.0	LOSA	13.7	98.0	0.43	0.39	0.43	25.7
12 R 2	66	0.0	66	0.0	* 0.504	37.3	LOS C	13.7	98.0	0.88	0.78	0.88	23.3
Approach	1358	3.3	1358	3.3	0.504	10.4	LOS A	13.7	98.0	0.45	0.41	0.45	26.1
All Vehicles	4437	2.8	4437	2.8	0.840	20.8	LOS B	17.1	122.4	0.74	0.69	0.75	21.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

∇ Site: 102 [102 PM APPROVED Princes Hwy \& 뭄 Network: 6 [Approved PM (Network Folder: Brooklyn St (Site Folder: Approved PM -

Intersection: Princes Hwy \& Brooklyn St

Period: PM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND S HV] \%	ARR FLO [Tota veh/h	VAL NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { EK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
$5 \quad$ T1	2874	3.4	2874	3.4	0.502	0.0	LOS A	7.9	57.1	0.00	0.00	0.00	59.6
Approach	2874	3.4	2874	3.4	0.502	0.0	NA	7.9	57.1	0.00	0.00	0.00	59.6
North: Brooklyn Street (NW)													
7 L2	7	0.0	7	0.0	0.007	5.8	LOS A	0.0	0.2	0.36	0.53	0.36	43.0
Approach	7	0.0	7	0.0	0.007	5.8	LOS A	0.0	0.2	0.36	0.53	0.36	43.0
West: Princes Highway (SW)													
10 L2	13	8.3	13	8.3	0.179	4.9	LOS A	0.0	0.0	0.00	0.02	0.00	56.2
11 T1	1355	3.5	1355	3.5	0.179	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.4
Approach	1367	3.5	1367	3.5	0.179	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.2
All Vehicles	4248	3.4	4248	3.4	0.502	0.0	NA	7.9	57.1	0.00	0.00	0.00	59.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 103 [103 PM APPROVED Princes Hwy \& \quad 무 Network: 6 [Approved PM (Network Folder: Ikea (HV) DW (Site Folder: Approved PM -

Intersection: Princes Hwy \& Ikea (HV) DW
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRIVAL FLOWS [Total HV] veh/h \%		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveAver. No. Stop Cycles Rate		Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.004	6.6	LOS A	0.0	0.1	0.68	0.61	0.68	22.9
Approach	1	0.0	1	0.0	0.004	6.6	LOS A	0.0	0.1	0.68	0.61	0.68	22.9
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.496	2.1	LOS A	1.1	8.2	0.00	0.00	0.00	56.6
5 T1	2837	3.4	2837	3.4	0.496	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.5
Approach	2838	3.4	2838	3.4	0.496	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.5
West: Princes Highway (SW)													
11 T1	1342	3.5	1342	3.5	0.235	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1342	3.5	1342		0.235	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4181	3.4	4181	3.4	0.496	0.0	NA	1.1	8.2	0.00	0.00	0.00	58.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 104 [104 PM APPROVED Princes Hwy \& 무 Network: 6 [Approved PM (Network Folder: Foreman St (Site Folder: Approved PM -

Intersection: Princes Hwy \& Foreman St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARRIVAL FLOWS [Total HV] veh/h \%		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveAver. No. Stop Cycles Rate		Aver. Speed km / h
East: Princes Highway (NE)													
5 T1	2829	3.5	2829	3.5	0.495	0.1	LOS A	18.3	132.1	0.00	0.00	0.00	59.6
Approach	2829	3.5	2829	3.5	0.495	0.1	NA	18.3	132.1	0.00	0.00	0.00	59.6
North: Foreman Street (NW)													
$7 \quad$ L2	21	0.0	21	0.0	0.023	6.4	LOS A	0.1	0.6	0.43	0.61	0.43	42.6
Approach	21	0.0	21	0.0	0.023	6.4	LOS A	0.1	0.6	0.43	0.61	0.43	42.6
West: Princes Highway (SW)													
11 T1	1342	3.5	1342	3.5	0.235	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1342	3.5	1342		0.235	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4193	3.5	4193	3.5	0.495	0.1	NA	18.3	132.1	0.00	0.00	0.00	59.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 PM APPROVED Princes Hwy \& Ikea Access Road (Site Folder: Approved PM -

무 Network: 6 [Approved PM (Network Folder: Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	123	1.7	123	1.7	0.505	55.7	LOS D	6.8	48.3	0.96	0.79	0.96	5.6
3 R2	117	3.6	117	3.6	* 0.553	68.0	LOS E	3.6	25.7	1.00	0.76	1.03	12.6
Approach	240	2.6	240	2.6	0.553	61.7	LOS E	6.8	48.3	0.98	0.78	0.99	9.6
East: Princes Highway (NE)													
4 L2	125	1.7	125	1.7	0.079	7.0	LOS A	1.1	7.7	0.16	0.58	0.16	40.9
$5 \quad$ T1	2691	3.0	2691	3.0	* 0.772	8.4	LOS A	29.8	213.7	0.60	0.56	0.60	37.5
Approach	2816	3.0	2816	3.0	0.772	8.4	LOS A	29.8	213.7	0.58	0.56	0.58	37.7
West: Princes Highway (SW)													
11 T1	1354	3.0	1354	3.0	0.275	1.6	LOS A	4.8	34.2	0.20	0.18	0.20	56.0
12 R2	87	0.0	87	0.0	* 0.460	37.0	LOS C	5.0	35.2	0.97	0.86	0.97	16.6
Approach	1441	2.8	1441	2.8	0.460	3.8	LOS A	5.0	35.2	0.25	0.22	0.25	51.2
All Vehicles	4497	2.9	4497	2.9	0.772	9.8	LOS A	29.8	213.7	0.49	0.46	0.50	37.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

∇ Site: 106v [106 PM APPROVED Princes Hwy \& Bunnings Access (Site Folder: Approved PM
 무 Network: 6 [Approved PM (Network Folder: - Network)]

Intersection: Princes Hwy \& Bunnings Access

Period: PM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRIVAL FLOWS [Total HV] veh/h \%		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveAver. No. Stop Cycles Rate		Aver. Speed km / h
South: Bunnings Access													
1 L2	44	0.0	44	0.0	0.184	11.8	LOS A	0.6	4.5	0.70	0.87	0.71	43.5
Approach	44	0.0	44	0.0	0.184	11.8	LOS A	0.6	4.5	0.70	0.87	0.71	43.5
East: Princes Highway (NE)													
5 T1	2837	3.4	2837	3.4	0.496	0.0	LOS A	0.9	6.5	0.00	0.00	0.00	59.6
Approach	2837	3.4	2837	3.4	0.496	0.0	NA	0.9	6.5	0.00	0.00	0.00	59.6
West: Princes Highway (SW)													
11 T1	1342	3.5	1342	3.5	0.235	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
12 R 2	13	0.0	13	0.0	0.242	72.9	LOS F	0.6	4.3	0.97	1.00	1.02	13.6
Approach	1355	3.5	1355	3.5	0.242	0.7	NA	0.6	4.3	0.01	0.01	0.01	44.3
All Vehicles	4236	3.4	4236	3.4	0.496	0.3	NA	0.9	6.5	0.01	0.01	0.01	47.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 SAT APPROVED Princes Hwy, $\square \square \square$ Network: 9 [Approved SAT (Network Folder: Smith St \& Union St (Site Folder: Approved Approved)] SAT - Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	53	102
Green Time (sec)	47	43	12
Phase Time (sec)	53	49	18
Phase Split	44%	41%	15%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 SAT APPROVED Princes Hwy \& Network: 9 [Approved SAT (Network Folder: Ikea Access Road (Site Folder: Approved SAT -

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	94	45	70
Green Time (sec)	65	19	18
Phase Time (sec)	71	25	24
Phase Split	59%	21%	20%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs

Other Movement Class (MC) Stopped \quad| Permitted/Opposed |
| :--- |
| Opposed Slip/Bypass-Lane |

Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:34:55 AM Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Template: Movement Summaries

Site: 101 [101 SAT APPROVED Princes Hwy, $\square \square \square+$ Network: 9 [Approved SAT (Network Folder: Smith St \& Union St (Site Folder: Approved Approved)] SAT - Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$	ARR FLO [Total veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{e} \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
1 L2	131	0.8	131	0.8	0.137	20.5	LOS B	3.9	27.4	0.55	0.69	0.55	27.9
2 T1	61	0.0	61	0.0	* 0.863	66.0	LOSE	9.3	65.4	1.00	1.00	1.36	19.8
3 R2	249	0.4	249	0.4	0.863	70.7	LOS F	10.7	75.4	1.00	0.98	1.34	11.5
Approach	441	0.5	441	0.5	0.863	55.2	LOS D	10.7	75.4	0.87	0.90	1.11	16.0
East: Princes Highway (NE)													
4 L2	239	0.4	239	0.4	0.381	27.0	LOS B	9.0	63.6	0.73	0.77	0.73	25.4
5 T1	1716	3.3	1716	3.3	* 0.825	37.5	LOS C	17.0	122.4	0.93	0.89	1.00	14.1
Approach	1955	2.9	1955	2.9	0.825	36.2	LOS C	17.0	122.4	0.91	0.87	0.97	15.5
West: Princes Highway (SW)													
10 L2	21	0.0	21	0.0	0.681	9.1	LOS A	11.5	81.6	0.32	0.30	0.32	45.6
11 T1	1715	1.8	1715	1.8	0.681	8.7	LOSA	22.6	159.6	0.44	0.44	0.44	25.8
12 R 2	223	0.0	223	0.0	* 0.681	32.6	LOS C	22.6	159.6	0.84	0.95	0.84	25.0
Approach	1959	1.6	1959		0.681	11.5	LOS A	22.6	159.6	0.48	0.50	0.48	25.9
All Vehicles	4355	2.1	4355	2.1	0.863	27.0	LOS B	22.6	159.6	0.71	0.71	0.76	18.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

∇ Site: 102 [102 SAT APPROVED Princes Hwy 뭄 Network: 9 [Approved SAT (Network Folder: \& Brooklyn St (Site Folder: Approved SAT -
 Approved)] Network)]

Intersection: Princes Hwy \& Brooklyn St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	ND S HV] \%	ARR FLO [Tota veh/h	VAL NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh veh	$\begin{gathered} \text { K OF OF } \\ \text { JE } \\ \text { Dist] } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
$5 \quad$ T1	1955	2.9	1955	2.9	0.340	0.0	LOS A	8.0	57.1	0.00	0.00	0.00	59.8
Approach	1955	2.9	1955	2.9	0.340	0.0	NA	8.0	57.1	0.00	0.00	0.00	59.8
North: Brooklyn Street (NW)													
7 L2	8	0.0	8	0.0	0.009	6.5	LOS A	0.0	0.2	0.45	0.58	0.45	42.5
Approach	8	0.0	8	0.0	0.009	6.5	LOS A	0.0	0.2	0.45	0.58	0.45	42.5
West: Princes Highway (SW)													
10 L2	4	0.0	4	0.0	0.255	5.0	LOS A	0.0	0.0	0.00	0.01	0.00	57.1
11 T1	1960	1.7	1960	1.7	0.255	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	1964	1.7	1964	1.7	0.255	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7
All Vehicles	3927	2.3	3927	2.3	0.340	0.0	NA	8.0	57.1	0.00	0.00	0.00	59.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 103 [103 SAT APPROVED Princes Hwy \quad Network: 9 [Approved SAT (Network Folder: \& Ikea (HV) DW (Site Folder: Approved SAT Approved)] Network)]

Intersection: Princes Hwy \& Ikea (HV) DW
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	$\begin{aligned} & \text { K OF } \\ & \text { JE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.001	3.7	LOS A	0.0	0.0	0.50	0.41	0.50	23.8
Approach	1	0.0	1	0.0	0.001	3.7	LOS A	0.0	0.0	0.50	0.41	0.50	23.8
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.321	2.1	LOS A	0.0	0.0	0.00	0.00	0.00	56.7
5 T1	1839	3.1	1839	3.1	0.321	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.7
Approach	1840	3.1	1840	3.1	0.321	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.7
West: Princes Highway (SW)													
11 T1	1921	1.7	1921	1.7	0.332	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1921	1.7	1921		0.332	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3762	2.4	3762	2.4	0.332	0.0	NA	1.1	8.2	0.00	0.00	0.00	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

∇ Site: 104 [104 SAT APPROVED Princes Hwy 뭄 Network: 9 [Approved SAT (Network Folder: \& Foreman St (Site Folder: Approved SAT -

Intersection: Princes Hwy \& Foreman St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND VS HV] \%	ARRIVAL FLOWS [Total HV] veh/h \%		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAver. No. Stop Cycles Rate		Aver. Speed km / h
East: Princes Highway (NE)													
5 T1	1836	2.5	1836	2.5	0.319	0.0	LOS A	7.7	54.9	0.00	0.00	0.00	59.8
Approach	1836	2.5	1836	2.5	0.319	0.0	NA	7.7	54.9	0.00	0.00	0.00	59.8
North: Foreman Street (NW)													
7 L2	19	5.6	19	5.6	0.028	7.9	LOS A	0.1	0.7	0.53	0.70	0.53	41.2
Approach	19	5.6	19	5.6	0.028	7.9	LOS A	0.1	0.7	0.53	0.70	0.53	41.2
West: Princes Highway (SW)													
11 T1	1958	2.0	1958	2.0	0.339	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1958	2.0	1958	2.0	0.339	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3813	2.3	3813	2.3	0.339	0.1	NA	7.7	54.9	0.00	0.00	0.00	59.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 SAT APPROVED Princes Hwy \& 마 Network: 9 [Approved SAT (Network Folder: Ikea Access Road (Site Folder: Approved SAT -

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	203	0.5	203	0.5	0.412	34.2	Los C	8.6	60.8	0.77	0.76	0.77	8.6
3 R2	311	1.4	311	1.4	* 0.570	55.6	LOS D	9.2	65.1	0.97	0.80	0.97	14.6
Approach	514	1.0	514	1.0	0.570	47.2	LOS D	9.2	65.1	0.89	0.79	0.89	13.0
East: Princes Highway (NE)													
4 L2	414	1.0	414	1.0	0.296	10.7	LOS A	7.6	53.6	0.35	0.65	0.35	36.2
$5 \quad$ T1	1633	2.8	1633	2.8	* 0.581	18.3	LOS B	23.4	167.4	0.69	0.62	0.69	26.1
Approach	2046	2.4	2046	2.4	0.581	16.7	LOS B	23.4	167.4	0.62	0.62	0.62	28.1
West: Princes Highway (SW)													
11 T1	1649	2.4	1649	2.4	0.378	5.2	LOSA	10.6	76.0	0.37	0.33	0.37	49.2
12 R2	308	0.0	308	0.0	* 0.686	42.9	LOS D	15.7	109.7	0.97	1.02	0.97	15.0
Approach	1958	2.0	1958	2.0	0.686	11.1	LOS A	15.7	109.7	0.46	0.44	0.46	39.5
All Vehicles	4518	2.1	4518	2.1	0.686	17.8	LOS B	23.4	167.4	0.58	0.56	0.58	29.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 106v [106 SAT APPROVED Princes Hwy \quad 무 Network: 9 [Approved SAT (Network Folder: \& Bunnings Access (Site Folder: Approved SAT

Approved)]

- Network)]

Intersection: Princes Hwy \& Bunnings Access
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	ND NS HV] \%	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km / h
South: Bunnings Access													
1 L2	105	0.0	105	0.0	0.169	7.9	LOS A	0.4	3.1	0.48	0.73	0.48	47.8
Approach	105	0.0	105	0.0	0.169	7.9	LOS A	0.4	3.1	0.48	0.73	0.48	47.8
East: Princes Highway (NE)													
5 T1	1839	3.1	1839	3.1	0.353	0.0	LOS A	0.9	6.5	0.00	0.00	0.00	59.8
Approach	1839	3.1	1839	3.1	0.353	0.0	NA	0.9	6.5	0.00	0.00	0.00	59.8
West: Princes Highway (SW)													
11 T1	1921	1.7	1921	1.7	0.332	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
12 R 2	47	0.0	47	0.0	0.327	31.5	LOS C	1.0	7.0	0.92	1.00	1.06	19.0
Approach	1968	1.7	1968		0.332	0.8	NA	1.0	7.0	0.02	0.02	0.03	40.0
All Vehicles	3912	2.3	3912	2.3	0.353	0.6	NA	1.0	7.0	0.02	0.03	0.03	44.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

NETWORK LAYOUT

맴 Network：N101［DEV AM Network（Network Folder：
Proposed）］
New Network
Network Category：（None）

Layout pictures are schematic functional drawings reflecting input data．They are not design drawings．
${ }^{N}$

SITES IN NETWORK		
Site ID	CCG ID	Site Name
目101	NA	101 AM DEV Princes Hwy，Smith St \＆Union St
$\nabla 102$	NA	102 AM DEV Princes Hwy \＆Brooklyn St
$\nabla 103$	NA	103 AM DEV Princes Hwy \＆Ikea（HV）DW
$\nabla 104$	NA	104 AM DEV Princes Hwy \＆Foreman St
目105	NA	105 AM DEV Princes Hwy \＆Ikea Access Road
目106	NA	106 AM DEV Princes Hwy \＆Bunnings Access

SIDRA INTERSECTION 9．0｜Copyright © 2000－2020 Akcelik and Associates Pty Ltd｜sidrasolutions．com Organisation：TRAFFIX PTY LTD｜Licence：NETWORK／1PC｜Created：Wednesday， 10 August 2022 4：19：05 PM Project：T：ISynergy\Projects\22\22．256\Modelling\22．256m01v03 TRAFFIX Bunnings Tempe Feasibility Study．sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 AM DEV Princes Hwy, Smith St \& Union St (Site Folder: Proposed AM Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	35	116
Green Time (sec)	29	75	18
Phase Time (sec)	35	81	24
Phase Split	25%	58%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Intersection: Princes Hwy \& Ikea Access Road

Period: AM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	26	135	14
Green Time (sec)	103	13	6
Phase Time (sec)	109	19	12
Phase Split	78%	14%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running

Site: 106 [106 AM DEV Princes Hwy \& Bunnings Access (Site Folder: Proposed AM Folder: Proposed)] Network)]

Intersection: Princes Hwy \& Bunnings Access
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	11	109	124
Green Time (sec)	92	9	21
Phase Time (sec)	98	15	27
Phase Split	70%	11%	19%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

Phase A REF Phase B

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:31:27 AM Project: T:ISynergy\Projects $222 \backslash 22.256 \backslash$ Modelling 22.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes

Template: Movement Summaries

Site: 101 [101 AM DEV Princes Hwy, Smith St
\& Union St (Site Folder: Proposed AM Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		ND NS HV] \%	ARR FLO [Total veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { e } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
L2	15	14.3	15	14.3	0.012	10.7	LOS A	0.3	2.2	0.30	0.59	0.30	34.5
2 T1	8	0.0	8	0.0	* 0.105	57.6	LOS E	1.5	11.2	0.91	0.69	0.91	21.3
3 R2	39	13.5	39	13.5	0.105	62.9	LOS E	1.5	11.2	0.91	0.70	0.91	12.6
Approach	62	11.9	62	11.9	0.105	49.8	LOS D	1.5	11.2	0.77	0.67	0.77	17.0
East: Princes Highway (NE)													
4 L2	51	0.0	51	0.0	0.048	12.9	LOS A	1.3	9.4	0.47	0.66	0.47	34.8
$5 \quad$ T1	813	0.0	813	0.0	* 0.662	44.9	LOS D	16.1	112.7	0.89	0.76	0.89	12.2
Approach	863	0.0	863	0.0	0.662	43.0	LOS D	16.1	112.7	0.87	0.75	0.87	13.1
West: Princes Highway (SW)													
10 L2	33	3.2	33	3.2	0.680	12.4	LOS A	30.5	221.8	0.49	0.47	0.49	41.7
11 T1	2966	4.7	2966	4.7	0.680	7.2	LOS A	30.5	222.2	0.50	0.47	0.50	29.2
12 R2	25	0.0	25	0.0	* 0.680	13.5	LOSA	29.0	210.9	0.52	0.47	0.52	39.9
Approach	3024	4.7	3024	4.7	0.680	7.3	LOS A	30.5	222.2	0.50	0.47	0.50	29.7
All Vehicles	3949	3.8	3949	3.8	0.680	15.8	LOS B	30.5	222.2	0.59	0.53	0.59	21.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 102 [102 AM DEV Princes Hwy \& Brooklyn St (Site Folder: Proposed AM -

Intersection: Princes Hwy \& Brooklyn St

Period: AM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Total veh/h	IVAL WS I HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km / h
East: Princes Highway (NE)													
5 T1	974	10.1	974	10.1	0.310	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	974	10.1	974	10.1	0.310	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7
North: Brooklyn Street (NW)													
7 L2	24	4.3	24	4.3	0.052	8.4	LOS A	0.1	1.0	0.56	0.73	0.56	40.8
Approach	24	4.3	24	4.3	0.052	8.4	LOS A	0.1	1.0	0.56	0.73	0.56	40.8
West: Princes Highway (SW)													
10 L2	18	11.8	18	11.8	0.569	5.0	LOS A	0.0	0.0	0.00	0.01	0.00	55.6
11 T1	2991	4.9	2991		0.569	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	58.9
Approach	3008	4.9	3008		0.569	0.1	NA	0.0	0.0	0.00	0.00	0.00	58.8
All Vehicles	4006	6.1	4006	6.1	0.569	0.1	NA	0.1	1.0	0.00	0.01	0.00	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Ikea (HV) DW
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Tota veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh } \\ \text { veh } \end{gathered}$	K OF Dist] m	Prop. Que	Effective Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.002	3.0	LOS A	0.0	0.1	0.45	0.38	0.45	24.0
Approach	1	0.0	1	0.0	0.002	3.0	LOS A	0.0	0.1	0.45	0.38	0.45	24.0
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.258	2.1	LOS A	1.1	8.2	0.00	0.00	0.00	56.8
$5 \quad \mathrm{~T} 1$	942	10.4	942	10.4	0.258	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.6
Approach	943	10.4	943	10.4	0.258	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.5
West: Princes Highway (SW)													
11 T1	2991	4.9	2991	4.9	0.527	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2991	4.9	2991		0.527	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3935	6.2	3935	6.2	0.527	0.0	NA	1.1	8.2	0.00	0.00	0.00	58.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
∇ Site: 104 [104 AM DEV Princes Hwy \& Foreman St (Site Folder: Proposed AM -

Intersection: Princes Hwy \& Foreman St
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	942	10.4	942	10.4	0.172	0.0	LOS A	6.2	47.1	0.00	0.00	0.00	59.9
Approach	942	10.4	942	10.4	0.172	0.0	NA	6.2	47.1	0.00	0.00	0.00	59.9
North: Foreman Street (NW)													
7 L2	31	3.4	31	3.4	0.073	11.8	LOS A	0.2	1.6	0.73	0.87	0.73	38.0
Approach	31	3.4	31	3.4	0.073	11.8	LOS A	0.2	1.6	0.73	0.87	0.73	38.0
West: Princes Highway (SW)													
11 T1	2991	4.9	2991		0.527	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2991	4.9	2991		0.527	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3963	6.2	3963	6.2	0.527	0.1	NA	6.2	47.1	0.01	0.01	0.01	57.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 AM DEV Princes Hwy \& Ikea Access Road (Site Folder: Proposed AM Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$			ARR FLO [Tota veh/h	IVAL WS IHV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh veh	CK OF UE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	9	0.0	9	0.0	0.032	54.5	LOS D	0.5	3.7	0.85	0.66	0.85	5.8
3 R2	13	41.7	13	41.7	* 0.088	77.0	LOS F	0.4	4.1	0.98	0.66	0.98	10.9
Approach	22	23.8	22	23.8	0.088	67.3	LOS E	0.5	4.1	0.92	0.66	0.92	9.3
East: Princes Highway (NE)													
4 L2	22	28.6	22	28.6	0.017	8.1	LOS A	0.3	2.2	0.18	0.56	0.18	39.2
$5 \quad$ T1	932	11.5	932	11.5	0.230	5.8	LOS A	6.4	49.2	0.33	0.29	0.33	42.4
Approach	954	11.9	954	11.9	0.230	5.9	LOS A	6.4	49.2	0.33	0.30	0.33	42.3
West: Princes Highway (SW)													
11 T1	2962	5.0	2962	5.0	* 0.604	2.3	LOS A	17.2	125.7	0.28	0.26	0.28	54.7
12 R2	43	0.0	43	0.0	0.128	8.1	LOS A	0.5	3.8	0.23	0.61	0.23	35.2
Approach	3005	4.9	3005	4.9	0.604	2.3	LOS A	17.2	125.7	0.28	0.27	0.28	54.4
All Vehicles	3981	6.7	3981	6.7	0.604	3.6	LOS A	17.2	125.7	0.29	0.28	0.29	51.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 106 [106 AM DEV Princes Hwy \&

Intersection: Princes Hwy \& Bunnings Access

Period: AM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text {] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \mathrm{~B} \\ \text { QL } \end{array}$ [Veh. veh	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Bunnings Access													
1 L2	32	0.0	32	0.0	0.064	46.4	LOS D	1.6	11.1	0.78	0.71	0.78	24.0
3 R2	32	0.0	32	0.0	* 0.108	60.1	LOS E	1.9	13.0	0.89	0.72	0.89	20.4
Approach	63	0.0	63	0.0	0.108	53.3	LOS D	1.9	13.0	0.84	0.72	0.84	22.1
East: Princes Highway (NE)													
$5 \quad$ T1	889	11.0	889	11.0	0.245	9.9	LOS A	0.9	6.5	0.43	0.37	0.43	5.7
Approach	889	11.0	889	11.0	0.245	9.9	LOS A	0.9	6.5	0.43	0.37	0.43	5.7
West: Princes Highway (SW)													
11 T1	2959	4.9	2959	4.9	* 0.677	1.5	LOS A	7.7	56.1	0.12	0.11	0.12	39.4
12 R 2	32	0.0	32	0.0	0.238	72.0	LOS F	2.1	14.8	0.98	0.72	0.98	13.8
Approach	2991	4.9	2991	4.9	0.677	2.3	LOS A	7.7	56.1	0.13	0.12	0.13	32.7
All Vehicles	3943	6.2	3943	6.2	0.677	4.8	LOS A	7.7	56.1	0.21	0.18	0.21	22.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:57:42 PM
Project: T:ISynergy\Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 22.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	93	107
Green Time (sec)	87	8	17
Phase Time (sec)	93	14	23
Phase Split	72%	11%	18%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 PM DEV Princes Hwy \& Ikea
무 Network: 4 [DEV PM Network (Network Folder: Proposed) $]$ Access Road (Site Folder: Proposed PM Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	104	80	92
Green Time (sec)	100	6	6
Phase Time (sec)	106	12	12
Phase Split	82%	9%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running
Othermitted/Opposed
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

Site: 106 [106 PM DEV Princes Hwy \&
무 Network: 4 [DEV PM Network (Network Folder: Proposed)] Bunnings Access (Site Folder: Proposed PM Network)]

Intersection: Princes Hwy \& Bunnings Access
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	120	81	93
Green Time (sec)	85	6	21
Phase Time (sec)	91	12	27
Phase Split	70%	9%	21%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

Phase A REF Phase B

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:31:52 AM Project: T:ISynergy \mid Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 222.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement ClassesProject: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe
Template: Movement Feasibility Study Summaries

Site: 101 [101 PM DEV Princes Hwy, Smith St
마 Network: 4 [DEV PM Network (Network \& Union St (Site Folder: Proposed PM Folder: Proposed)] Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Total veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
1 L2	27	3.8	27	3.8	0.062	44.6	LOS D	1.3	9.5	0.80	0.70	0.80	29.2
2 T1	36	0.0	36	0.0	* 0.148	53.5	LOS D	2.2	15.7	0.92	0.69	0.92	22.8
3 R2	42	0.0	42	0.0	0.148	58.2	LOS E	2.2	15.7	0.91	0.72	0.91	13.3
Approach	105	1.0	105	1.0	0.148	53.1	LOS D	2.2	15.7	0.88	0.70	0.88	21.3
East: Princes Highway (NE)													
4 L2	91	4.7	91	4.7	0.259	58.5	LOS E	5.6	40.5	1.00	0.78	1.00	15.8
$5 \quad$ T1	2791	2.7	2791	2.7	* 0.717	2.0	LOS A	9.5	68.4	0.14	0.13	0.14	56.9
Approach	2881	2.7	2881	2.7	0.717	3.7	LOS A	9.5	68.4	0.16	0.15	0.16	54.1
West: Princes Highway (SW)													
10 L2	32	6.7	32	6.7	0.378	9.8	LOS A	8.3	59.8	0.31	0.30	0.31	50.6
11 T1	1313	3.2	1313	3.2	0.378	4.3	LOS A	8.3	59.8	0.32	0.30	0.32	52.4
12 R 2	7	0.0	7	0.0	* 0.378	10.2	LOS A	8.0	57.7	0.35	0.31	0.35	51.2
Approach	1352	3.3	1352	3.3	0.378	4.5	LOS A	8.3	59.8	0.32	0.30	0.32	52.3
All Vehicles	4338	2.9	4338	2.9	0.717	5.2	LOS A	9.5	68.4	0.23	0.21	0.23	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

V Site: 102 [102 PM DEV Princes Hwy \& Brooklyn St (Site Folder: Proposed PM -

Intersection: Princes Hwy \& Brooklyn St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND S HV] \%	ARR FLO [Tota veh/h	VAL NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { EK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
$5 \quad$ T1	2934	3.3	2934	3.3	0.512	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
Approach	2934	3.3	2934	3.3	0.512	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.6
North: Brooklyn Street (NW)													
7 L2	7	0.0	7	0.0	0.010	5.7	LOS A	0.0	0.2	0.35	0.53	0.35	43.1
Approach	7	0.0	7	0.0	0.010	5.7	LOS A	0.0	0.2	0.35	0.53	0.35	43.1
West: Princes Highway (SW)													
10 L2	13	8.3	13	8.3	0.234	4.9	LOS A	0.0	0.0	0.00	0.02	0.00	56.1
11 T1	1319	3.6	1319	3.6	0.234	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.3
Approach	1332	3.6	1332	3.6	0.234	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.1
All Vehicles	4273	3.4	4273	3.4	0.512	0.0	NA	0.0	0.2	0.00	0.00	0.00	59.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
∇ Site: 103 [103 PM DEV Princes Hwy \& Ikea (HV) DW (Site Folder: Proposed PM Network)]

Intersection: Princes Hwy \& Ikea (HV) DW
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	ND VS HV] \%	ARRI FLOV [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { JE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1		0.004	6.5	LOS A	0.0	0.3	0.67	0.61	0.67	23.0
Approach	1	0.0	1		0.004	6.5	LOS A	0.0	0.3	0.67	0.61	0.67	23.0
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.490	2.1	LOS A	1.1	8.2	0.00	0.00	0.00	56.6
$5 \quad$ T1	2843	3.4	2805		0.490	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.6
Approach	2844	3.4	$2806 \text { N }$		0.490	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.5
West: Princes Highway (SW)													
11 T1	1352	3.5	1352		0.236	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1352	3.5	1352		0.236	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4197	3.4	4158^{N}		0.490	0.0	NA	1.1	8.2	0.00	0.00	0.00	58.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

V Site: 104 [104 PM DEV Princes Hwy \& Foreman St (Site Folder: Proposed PM -

Intersection: Princes Hwy \& Foreman St
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEMA FLO [Total veh/h	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	CK OF UE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	2836	3.5	2707		0.473	0.1	LOS A	35.1	253.0	0.00	0.00	0.00	59.6
Approach	2836	3.5	$\frac{2707_{1}^{N}}{}$		0.473	0.1	NA	35.1	253.0	0.00	0.00	0.00	59.6
North: Foreman Street (NW)													
7 L2	21	0.0	21		0.024	6.4	LOS A	0.1	0.6	0.44	0.61	0.44	42.6
Approach	21	0.0	21		0.024	6.4	LOS A	0.1	0.6	0.44	0.61	0.44	42.6
West: Princes Highway (SW)													
11 T1	1352	3.5	1352		0.236	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1352	3.5	1352		0.236	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4208	3.5	4080^{N}		0.473	0.1	NA	35.1	253.0	0.00	0.00	0.00	59.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Site: 105 [105 PM DEV Princes Hwy \& Ikea Access Road (Site Folder: Proposed PM -

Intersection: Princes Hwy \& Ikea Access Road

Period: PM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \mathrm{m} \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	123	1.7	123	1.7	* 1.030	139.4	LOS F	12.7	90.1	1.00	1.31	1.96	2.4
3 R2	117	3.6	117	3.6	0.599	74.1	LOS F	3.9	28.1	1.00	0.78	1.06	11.7
Approach	240	2.6	240	2.6	1.030	107.6	LOS F	12.7	90.1	1.00	1.05	1.53	5.9
East: Princes Highway (NE)													
4 L2	125	1.7	125	1.7	0.078	6.9	LOS A	1.1	7.6	0.15	0.57	0.15	41.0
$5 \quad$ T1	2697	3.0	2697	3.0	* 1.229	267.6	LOS F	151.7	1089.1	1.00	2.16	2.51	3.0
Approach	2822	2.9	2822	2.9	1.229	256.0	LOS F	151.7	1089.1	0.96	2.09	2.41	3.1
West: Princes Highway (SW)													
11 T1	1363	3.0	1363	3.0	0.273	1.5	LOS A	4.8	34.5	0.19	0.17	0.19	56.3
12 R2	87	0.0	87	0.0	0.543	69.6	LOSE	5.6	39.2	1.00	0.83	1.00	10.4
Approach	1451	2.8	1451	2.8	0.543	5.6	LOS A	5.6	39.2	0.23	0.21	0.23	47.9
All Vehicles	4513	2.9	4513		1.229	167.6	LOS F	151.7	1089.1	0.73	1.43	1.66	5.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 106 [106 PM DEV Princes Hwy \&

Intersection: Princes Hwy \& Bunnings Access
Period: PM Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text {] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Bunnings Access													
1 L2	98	0.0	98	0.0	0.202	45.6	LOS D	4.8	33.7	0.82	0.76	0.82	24.2
3 R2	98	0.0	98	0.0	* 0.311	57.1	LOS E	5.5	38.5	0.92	0.77	0.92	21.1
Approach	196	0.0	196	0.0	0.311	51.4	LOS D	5.5	38.5	0.87	0.77	0.87	22.6
East: Princes Highway (NE)													
$5 \quad$ T1	2843	3.4	2843	3.4	* 0.751	15.6	LOS B	0.9	6.5	0.73	0.68	0.73	3.7
Approach	2843	3.4	2843	3.4	0.751	15.6	LOS B	0.9	6.5	0.73	0.68	0.73	3.7
West: Princes Highway (SW)													
11 T1	1254	3.8	1254	3.8	0.291	4.9	LOS A	6.9	49.7	0.28	0.25	0.28	22.3
12 R 2	65	0.0	65	0.0	* 0.653	73.5	LOS F	4.4	30.7	1.00	0.80	1.11	13.6
Approach	1319	3.6	1319	3.6	0.653	8.3	LOS A	6.9	49.7	0.31	0.27	0.32	18.0
All Vehicles	4358	3.3	4358	3.3	0.751	15.0	LOS B	6.9	49.7	0.61	0.56	0.61	10.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:59:54 PM
Project: T:ISynergy\Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 22.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 SAT DEV Princes Hwy, Smith St \& Union St (Site Folder: Proposed SAT Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	71	108
Green Time (sec)	65	31	6
Phase Time (sec)	71	37	12
Phase Split	59%	31%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 SAT DEV Princes Hwy \& Ikea Access Road (Site Folder: Proposed SAT -
\square Network: 8 [DEV SAT Network (Network Folder: Proposed)]

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	94	47	71
Green Time (sec)	67	18	17
Phase Time (sec)	73	24	23
Phase Split	61%	20%	19%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence		
Phase A REF	Phase B	Phase C

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
\checkmark Slip/Bypass-Lane Movement	\Rightarrow Opposed Slip/Bypass-Lane
Stopped Movement	\checkmark Turn On Red
Other Movement Class (MC) Running	\Rightarrow Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
$\sqrt{ }$ Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 106 [106 SAT DEV Princes Hwy \& Bunnings Access (Site Folder: Proposed SAT -

ㅁ Network: 8 [DEV SAT Network (Network Folder: Proposed)] Network)]

Intersection: Princes Hwy \& Bunnings Access
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	110	56	84
Green Time (sec)	60	22	20
Phase Time (sec)	66	28	26
Phase Split	55%	23%	22%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

Phase A REF Phase B

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:32:15 AM Project: T:ISynergy \mid Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 222.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement ClassesProject: 22.256m01v03 TRAFFIX Bunnings Tempe
Template: Movement Feasibility Study Summaries

Site: 101 [101 SAT DEV Princes Hwy, Smith St \& Union St (Site Folder: Proposed SAT Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	ARR FLO [Total veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	$\begin{gathered} \mathrm{K} \text { OF } \\ \mathrm{JE} \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
L2	25	4.2	25	4.2	0.038	30.4	LOS C	0.9	6.8	0.67	0.67	0.67	34.1
2 T1	14	0.0	14	0.0	0.243	61.3	LOS E	1.6	11.2	0.99	0.71	0.99	20.8
3 R2	39	2.7	39	2.7	0.243	66.0	LOS E	1.6	11.2	0.99	0.71	0.99	12.2
Approach	78	2.7	78	2.7	0.243	53.6	LOS D	1.6	11.2	0.88	0.70	0.88	20.6
East: Princes Highway (NE)													
4 L2	263	0.4	263	0.4	* 0.682	46.1	LOS D	13.8	96.7	1.00	0.84	1.00	18.6
$5 \quad$ T1	1845	3.0	1845	3.0	* 0.597	4.6	LOS A	10.9	78.0	0.24	0.21	0.24	53.1
Approach	2107	2.7	2107	2.7	0.682	9.8	LOS A	13.8	96.7	0.33	0.29	0.33	46.1
West: Princes Highway (SW)													
10 L2	21	0.0	21	0.0	0.438	7.4	LOS A	7.8	55.1	0.23	0.22	0.23	52.9
11 T1	1902	1.7	1902	1.7	0.438	2.0	LOS A	8.8	62.7	0.24	0.22	0.24	56.2
12 R2	13	0.0	13	0.0	* 0.438	7.7	LOS A	8.8	62.7	0.27	0.24	0.27	53.6
Approach	1936	1.6	1936		0.438	2.1	LOS A	8.8	62.7	0.24	0.22	0.24	56.1
All Vehicles	4121	2.2	4121	2.2	0.682	7.0	LOS A	13.8	96.7	0.30	0.27	0.30	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 102 [102 SAT DEV Princes Hwy \& Brooklyn St (Site Folder: Proposed SAT -

Intersection: Princes Hwy \& Brooklyn St

Period: PM Peak Hour

Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID			ARR FLO [Tota veh/h		Deg Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver Speed km/h
East: Princes Highway (NE)													
$5 \quad$ T1	2107	2.7	2107	2.7	0.414	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	2107	2.7	2107	2.7	0.414	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7
North: Brooklyn Street (NW)													
7 L2	8	0.0	8	0.0	0.019	6.5	LOS A	0.1	0.5	0.44	0.61	0.44	42.5
Approach	8	0.0	8	0.0	0.019	6.5	LOS A	0.1	0.5	0.44	0.61	0.44	42.5
West: Princes Highway (SW)													
10 L2	4	0.0	4	0.0	0.252	5.0	LOS A	3.8	27.2	0.00	0.01	0.00	57.1
11 T1	1936	1.7	1936	1.7	0.252	0.0	LOS A	4.7	33.7	0.00	0.00	0.00	59.7
Approach	1941	1.7	1941	1.7	0.252	0.0	NA	4.7	33.7	0.00	0.00	0.00	59.7
All Vehicles	4056	2.2	4056	2.2	0.414	0.0	NA	4.7	33.7	0.00	0.00	0.00	59.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
∇ Site: 103 [103 SAT DEV Princes Hwy \& Ikea (HV) DW (Site Folder: Proposed SAT Network)]

Intersection: Princes Hwy \& Ikea (HV) DW
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	VAL NS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	$\begin{aligned} & \text { CK OF } \\ & \text { JE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km / h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.003	3.8	LOS A	0.0	0.3	0.51	0.43	0.51	23.8
Approach	1	0.0	1	0.0	0.003	3.8	LOS A	0.0	0.3	0.51	0.43	0.51	23.8
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.325	2.1	LOS A	1.1	8.2	0.00	0.00	0.00	56.7
5 T1	1863	3.1	1863	3.1	0.325	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.7
Approach	1864	3.0	1864	3.0	0.325	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.7
West: Princes Highway (SW)													
11 T1	1945	1.7	1945	1.7	0.336	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1945	1.7	1945		0.336	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3809	2.3	3809	2.3	0.336	0.0	NA	1.1	8.2	0.00	0.00	0.00	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
∇ Site: 104 [104 SAT DEV Princes Hwy \& Foreman St (Site Folder: Proposed SAT -

Intersection: Princes Hwy \& Foreman St
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	Effective Stop Rate	ver. No. Cycles	Aver. Speed km / h
East: Princes Highway (NE)													
5 T1	1859	2.5	1859	2.5	0.469	0.1	LOS A	24.7	176.9	0.00	0.00	0.00	59.5
Approach	1859	2.5	1859	2.5	0.469	0.1	NA	24.7	176.9	0.00	0.00	0.00	59.5
North: Foreman Street (NW)													
$7 \quad$ L2	19	5.6	19	5.6	0.028	8.0	LOS A	0.1	0.7	0.53	0.70	0.53	41.2
Approach	19	5.6	19	5.6	0.028	8.0	LOS A	0.1	0.7	0.53	0.70	0.53	41.2
West: Princes Highway (SW)													
11 T1	1982	2.0	1982	2.0	0.343	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1982	2.0	1982	2.0	0.343	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3860	2.2	3860	2.2	0.469	0.1	NA	24.7	176.9	0.00	0.00	0.00	58.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 SAT DEV Princes Hwy \& Ikea Access Road (Site Folder: Proposed SAT -

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	203	0.5	203	0.5	0.540	37.4	LOS C	9.3	65.5	0.82	0.79	0.82	8.0
3 R2	311	1.4	311	1.4	* 0.612	56.8	LOS E	9.5	67.1	0.98	0.81	0.98	14.4
Approach	514	1.0	514	1.0	0.612	49.1	LOS D	9.5	67.1	0.92	0.80	0.92	12.6
East: Princes Highway (NE)													
4 L2	414	1.0	414	1.0	0.293	10.4	LOS A	7.3	51.8	0.33	0.65	0.33	36.5
$5 \quad$ T1	1656	2.7	1656	2.7	* 0.594	17.5	LOS B	24.3	173.8	0.68	0.62	0.68	26.8
Approach	2070	2.4	2070	2.4	0.594	16.1	LOS B	24.3	173.8	0.61	0.62	0.61	28.7
West: Princes Highway (SW)													
11 T1	1673	2.3	1673	2.3	0.379	4.8	LOS A	10.5	74.8	0.36	0.32	0.36	49.7
12 R2	308	0.0	308	0.0	* 0.713	45.3	LOS D	16.2	113.7	0.98	1.04	1.01	14.4
Approach	1982	2.0	1982	2.0	0.713	11.1	LOS A	16.2	113.7	0.45	0.43	0.46	39.4
All Vehicles	4565	2.1	4565	2.1	0.713	17.6	LOS B	24.3	173.8	0.58	0.56	0.58	29.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Site: 106 [106 SAT DEV Princes Hwy \& Bunnings Access (Site Folder: Proposed SAT Network)]

Intersection: Princes Hwy \& Bunnings Access
Period: SAT Peak Hour
Scenario: Exisitng + Development
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: Proposed Sequence
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$			ARR FLO [Tota veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	K OF J Dist] \qquad	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Bunnings Access													
1 L2	234	0.0	234	0.0	0.309	31.1	LOS C	9.2	64.3	0.72	0.77	0.72	29.9
3 R2	234	0.0	234	0.0	* 0.721	58.1	LOS E	13.5	94.4	1.00	0.86	1.06	20.9
Approach	468	0.0	468	0.0	0.721	44.6	LOS D	13.5	94.4	0.86	0.81	0.89	24.6
East: Princes Highway (NE)													
$5 \quad$ T1	1863	3.1	1863	3.1	* 0.639	22.8	LOS B	0.9	6.5	0.79	0.71	0.79	2.6
Approach	1863	3.1	1863	3.1	0.639	22.8	LOS B	0.9	6.5	0.79	0.71	0.79	2.6
West: Princes Highway (SW)													
11 T1	1711	1.9	1711	1.9	0.399	5.9	LOS A	8.0	57.1	0.39	0.35	0.39	19.7
12 R 2	234	0.0	234	0.0	* 0.658	52.5	LOS D	8.2	57.1	0.98	0.83	0.98	15.9
Approach	1945	1.7	1945		0.658	11.5	LOS A	8.2	57.1	0.46	0.41	0.46	17.2
All Vehicles	4276	2.1	4276	2.1	0.721	20.1	LOS B	13.5	94.4	0.65	0.58	0.65	14.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 5:00:51 PM
Project: T:ISynergy\Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling 22.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

NETWORK LAYOUT

마 Network: N101 [Ex AM Network (Network Folder: Existing)]
New Network
Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.
p

SITES IN NETWORK		
Site ID	CCG ID	Site Name
目101	NA	101 AM EX Princes Hwy, Smith St \& Union St
∇_{102}	NA	102 AM EX Princes Hwy \& Brooklyn St
∇_{103}	NA	103 AM EX Princes Hwy \& Ikea (HV) DW
∇_{104}	NA	104 AM EX Princes Hwy \& Foreman St
⿴105	NA	105 AM EX Princes Hwy \& Ikea Access Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:18:27 PM Project: T:ISynergy\Projects $\backslash 22 \backslash 22.256 \backslash$ Modelling $22.256 m 01 v 03$ TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	30	100
Green Time (sec)	24	64	14
Phase Time (sec)	30	70	20
Phase Split	25%	58%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence
Phase A

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Intersection: Princes Hwy \& Ikea Access Road
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	23	114	11
Green Time (sec)	85	11	6
Phase Time (sec)	91	17	12
Phase Split	76%	14%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

Phase A

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:27:00 AM Project: T:ISynergy\Projects $222 \backslash 22.256 \backslash$ Modelling 22.256 m 01 v 03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement ClassesProject: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Intersection: Princes Hwy, Smith St \& Union St
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID		ND VS HV] \%	ARR FLO [Tota veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh veh	K OF Dist] m	Prop. Que	$\begin{aligned} & \text { EffectiveA } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	er. No. Cycles	Aver. Speed
South: Smith Street (SE)													
L2	15	14.3	15	14.3	0.012	10.0	LOS A	0.2	1.9	0.31	0.59	0.31	35.1
2 T1	8	0.0	8	0.0	* 0.230	52.4	LOS D	2.6	19.7	0.94	0.74	0.94	22.1
3 R2	39	13.5	39	13.5	0.230	57.0	LOS E	2.6	19.7	0.94	0.74	0.94	13.5
Approach	62	11.9	62	11.9	0.230	45.2	LOS D	2.6	19.7	0.79	0.70	0.79	18.0
East: Princes Highway (NE)													
4 L2	19	0.0	19	0.0	* 0.658	52.4	LOS D	14.4	101.1	0.97	0.82	0.97	17.6
T1	781	0.0	781	0.0	0.658	47.5	LOS D	14.5	101.6	0.97	0.82	0.97	11.5
Approach	800	0.0	800	0.0	0.658	47.6	LOS D	14.5	101.6	0.97	0.82	0.97	11.7
West: Princes Highway (SW)													
10 L2	33	3.2	33	3.2	0.674	11.4	LOS A	25.8	187.9	0.49	0.47	0.49	42.6
11 T1	2935	4.8	2935	4.8	0.674	6.2	LOS A	25.8	188.2	0.50	0.46	0.50	30.9
12 R2	25	0.0	25	0.0	* 0.674	12.4	LOS A	24.5	178.3	0.52	0.46	0.52	40.6
Approach	2993	4.7	2993	4.7	0.674	6.3	LOS A	25.8	188.2	0.50	0.46	0.50	31.4
All Vehicles	3855	3.9	3855	3.9	0.674	15.5	LOS B	25.8	188.2	0.60	0.54	0.60	20.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 102 [102 AM EX Princes Hwy \& Brooklyn St (Site Folder: Existing AM -

Intersection: Princes Hwy \& Brooklyn St
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND NS HV] \%	ARR FLO [Tota veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { EK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	911	10.8	911	10.8	0.247	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	911	10.8	911	10.8	0.247	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
North: Brooklyn Street (NW)													
7 L2	24	4.3	24	4.3	0.049	10.9	LOS A	0.2	1.2	0.68	0.84	0.68	38.7
Approach	24	4.3	24	4.3	0.049	10.9	LOS A	0.2	1.2	0.68	0.84	0.68	38.7
West: Princes Highway (SW)													
10 L2	18	11.8	18	11.8	0.525	5.0	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
11 T1	2959	4.9	2959	4.9	0.525	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.2
Approach	2977	5.0	2977	5.0	0.525	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.1
All Vehicles	3912	6.3	3912	6.3	0.525	0.1	NA	0.2	1.2	0.00	0.01	0.00	58.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Ikea (HV) DW
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND S HV] \%	ARR FLO [Tota veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{array}$	$\begin{gathered} \text { CK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1		0.001	2.2	LOS A	0.0	0.0	0.35	0.30	0.35	24.2
Approach	1	0.0	1	0.0	0.001	2.2	LOS A	0.0	0.0	0.35	0.30	0.35	24.2
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.167	2.1	LOS A	0.0	0.0	0.00	0.00	0.00	56.8
$5 \quad$ T1	911	10.8	911	10.8	0.167	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	912	10.7	912	10.7	0.167	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.6
West: Princes Highway (SW)													
11 T1	2959	4.9	2959		0.522	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2959	4.9	2959		0.522	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3872	6.3	3872	6.3	0.522	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Foreman St
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh veh	$\begin{gathered} \text { EK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
$5 \quad$ T1	911	10.8	911	10.8	0.167	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	911	10.8	911	10.8	0.167	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
North: Foreman Street (NW)													
7 L2	26	4.0	26	4.0	0.935	234.3	LOS F	3.6	25.6	0.98	1.30	2.00	5.2
9 R2	4	0.0	4	0.0	0.935	849.6	LOS F	3.6	25.6	0.98	1.30	2.00	5.2
Approach	31	3.4	31	3.4	0.935	319.2	LOS F	3.6	25.6	0.98	1.30	2.00	5.2
West: Princes Highway (SW)													
11 T1	2959	4.9	2959	4.9	0.522	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.5
Approach	2959	4.9	2959	4.9	0.522	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.5
All Vehicles	3900	6.3	3900	6.3	0.935	2.5	NA	3.6	25.6	0.01	0.01	0.02	33.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 AM EX Princes Hwy \& Ikea Access Road (Site Folder: Existing AM Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: AM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Green Split Priority has been specified

Phase Sequence: TCS

Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARRI FLO [Total veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { I HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { Q Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { JE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	9	0.0	9	0.0	0.029	45.9	LOS D	0.4	3.1	0.83	0.66	0.83	6.7
3 R2	13	41.7	13	41.7	* 0.076	65.5	LOS E	0.4	3.5	0.97	0.66	0.97	12.2
Approach	22	23.8	22	23.8	0.076	57.1	LOS E	0.4	3.5	0.91	0.66	0.91	10.6
East: Princes Highway (NE)													
4 L2	22	28.6	22	28.6	0.017	8.0	LOS A	0.2	2.0	0.19	0.56	0.19	39.3
$5 \quad$ T1	900	11.9	900	11.9	0.231	6.1	LOS A	5.8	44.9	0.36	0.32	0.36	41.9
Approach	922	12.3	922	12.3	0.231	6.1	LOS A	5.8	44.9	0.36	0.32	0.36	41.8
West: Princes Highway (SW)													
11 T1	2931	5.1	2931	5.1	* 0.603	2.6	LOS A	16.4	119.7	0.32	0.30	0.32	54.0
12 R2	43	0.0	43	0.0	0.070	8.3	LOS A	0.5	3.6	0.26	0.62	0.26	34.9
Approach	2974	5.0	2974		0.603	2.7	LOS A	16.4	119.7	0.32	0.30	0.32	53.7
All Vehicles	3918	6.8	3918	6.8	0.603	3.8	LOS A	16.4	119.7	0.33	0.31	0.33	50.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 PM EX Princes Hwy, Smith St \&
Network: 2 [Ex PM Network (Network Union St (Site Folder: Existing PM - Network)]

Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	97	109
Green Time (sec)	91	6	15
Phase Time (sec)	97	12	21
Phase Split	75%	9%	16%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence

Phase A

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Intersection: Princes Hwy \& Ikea Access Road
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	106	80	94
Green Time (sec)	98	8	6
Phase Time (sec)	104	14	12
Phase Split	80%	11%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running
Oixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:29:27 AM Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes Template: Movement Summaries

Site: 101 [101 PM EX Princes Hwy, Smith St \&
마 Network: 2 [Ex PM Network (Network Union St (Site Folder: Existing PM - Network)]

Intersection: Princes Hwy, Smith St \& Union St
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$			ARR FLO [Tota veh/h	IVAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	CK OF UE Dist m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Smith Street (SE)													
1 L2	27	3.8	27	3.8	0.070	48.1	LOS D	1.4	9.9	0.83	0.70	0.83	31.2
2 T1	36	0.0	36	0.0	* 0.333	57.3	LOS E	4.6	32.3	0.96	0.75	0.96	27.6
3 R2	42	0.0	42	0.0	0.333	61.9	LOS E	4.6	32.3	0.96	0.75	0.96	19.2
Approach	105	1.0	105	1.0	0.333	56.8	LOS E	4.6	32.3	0.92	0.74	0.92	25.7
East: Princes Highway (NE)													
4 L2	25	16.7	25	16.7	* 0.681	16.2	LOS B	17.0	122.4	0.61	0.58	0.61	39.3
$5 \quad \mathrm{~T} 1$	2739	2.7	2739	2.7	0.681	11.3	LOS A	17.1	122.4	0.61	0.57	0.61	45.4
Approach	2764	2.9	2764	2.9	0.681	11.3	LOS A	17.1	122.4	0.61	0.57	0.61	45.4
West: Princes Highway (SW)													
10 L2	32	6.7	32	6.7	0.337	9.2	LOS A	7.6	54.9	0.29	0.28	0.29	50.9
11 T1	1294	3.3	1294	3.3	0.337	4.1	LOS A	8.0	57.7	0.31	0.28	0.31	52.7
12 R 2	7	0.0	7	0.0	* 0.337	10.9	LOS A	8.0	57.7	0.36	0.32	0.36	50.2
Approach	1333	3.3	1333	3.3	0.337	4.3	LOS A	8.0	57.7	0.31	0.28	0.31	52.6
All Vehicles	4202	3.0	4202	3.0	0.681	10.2	LOSA	17.1	122.4	0.52	0.49	0.52	45.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^5]∇ Site: 102 [102 PM EX Princes Hwy \& Brooklyn St (Site Folder: Existing PM -

Intersection: Princes Hwy \& Brooklyn St
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID			ARR FLO [Tota veh/h		Deg Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver Speed km/h
East: Princes Highway (NE)													
5 T1	2817	3.5	2817	3.5	0.492	0.0	LOS A	10.2	73.4	0.00	0.00	0.00	59.6
Approach	2817	3.5	2817	3.5	0.492	0.0	NA	10.2	73.4	0.00	0.00	0.00	59.6
North: Brooklyn Street (NW)													
7 L2	7	0.0	7	0.0	0.008	6.2	LOS A	0.0	0.2	0.42	0.56	0.42	42.8
Approach	7	0.0	7	0.0	0.008	6.2	LOS A	0.0	0.2	0.42	0.56	0.42	42.8
West: Princes Highway (SW)													
10 L2	13	8.3	13	8.3	0.230	4.9	LOS A	0.0	0.0	0.00	0.02	0.00	56.2
11 T1	1300	3.6	1300	3.6	0.230	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.4
Approach	1313	3.7	1313	3.7	0.230	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.2
All Vehicles	4137	3.5	4137	3.5	0.492	0.0	NA	10.2	73.4	0.00	0.00	0.00	59.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Ikea (HV) DW
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	ND S HV] \%	ARR FLO [Tota veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	er. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.004	6.6	LOS A	0.0	0.0	0.68	0.61	0.68	23.0
Approach	1	0.0	1	0.0	0.004	6.6	LOS A	0.0	0.0	0.68	0.61	0.68	23.0
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.494	2.1	LOS A	1.1	8.2	0.00	0.00	0.00	56.6
$5 \quad \mathrm{~T} 1$	2824	3.4	2824	3.4	0.494	0.0	LOS A	1.1	8.2	0.00	0.00	0.00	59.5
Approach	2825	3.4	2825	3.4	0.494	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.5
West: Princes Highway (SW)													
11 T1	1300	3.6	1300	3.6	0.227	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1300	3.6	1300	3.6	0.227	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4126	3.5	4126	3.5	0.494	0.0	NA	1.1	8.2	0.00	0.00	0.00	59.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Foreman St
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% Q [Veh. veh	K OF J Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
East: Princes Highway (NE)													
5 T1	2817	3.5	2817	3.5	0.492	0.1	LOS A	3.9	28.0	0.00	0.00	0.00	59.6
Approach	2817	3.5	2817	3.5	0.492	0.1	NA	3.9	28.0	0.00	0.00	0.00	59.6
North: Foreman Street (NW)													
7 L2	15	0.0	15	0.0	1.090	442.5	LOS F	4.3	29.9	1.00	1.55	2.48	3.1
9 R2	6	0.0	6	0.0	1.090	818.2	LOS F	4.3	29.9	1.00	1.55	2.48	3.1
Approach	21	0.0	21	0.0	1.090	555.2	LOS F	4.3	29.9	1.00	1.55	2.48	3.1
West: Princes Highway (SW)													
11 T1	1300	3.6	1300	3.6	0.227	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1300	3.6	1300	3.6	0.227	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles	4138	3.5	4138	3.5	1.090	2.9	NA	4.3	29.9	0.01	0.01	0.01	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 PM EX Princes Hwy \& Ikea Access Road (Site Folder: Existing PM Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: PM Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { C } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	123	1.7	123	1.7	0.468	58.9	LOS E	7.2	51.4	0.95	0.79	0.95	11.3
3 R2	117	3.6	117	3.6	* 0.599	74.1	LOS F	3.9	28.1	1.00	0.78	1.06	21.7
Approach	240	2.6	240	2.6	0.599	66.3	LOS E	7.2	51.4	0.98	0.79	1.01	17.6
East: Princes Highway (NE)													
4 L2	125	1.7	125	1.7	0.079	7.2	LOS A	1.2	8.5	0.17	0.58	0.17	50.2
$5 \quad$ T1	2678	3.0	2678	3.0	* 0.645	7.3	LOS A	27.2	195.7	0.49	0.45	0.49	48.6
Approach	2803	3.0	2803	3.0	0.645	7.3	LOS A	27.2	195.7	0.47	0.46	0.47	48.7
West: Princes Highway (SW)													
11 T1	1312	3.1	1311	3.1	0.263	1.5	LOS A	4.6	32.8	0.18	0.16	0.18	57.8
12 R2	87	0.0	87	0.0	* 0.411	28.6	LOS C	5.0	35.2	0.90	0.85	0.90	25.6
Approach	1399	2.9	1399	2.9	0.411	3.2	LOSA	5.0	35.2	0.23	0.21	0.23	55.3
All Vehicles	4442	2.9	4442	2.9	0.645	9.2	LOS A	27.2	195.7	0.42	0.40	0.43	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:11:58 PM
Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement Classes
Project: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 SAT EX Princes Hwy, Smith St
\& Union St (Site Folder: Existing SAT Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	0	92	107
Green Time (sec)	86	9	7
Phase Time (sec)	92	15	13
Phase Split	77%	13%	11%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

Output Phase Sequence
Phase A REF Phase B

REF: Reference Phase
VAR: Variable Phase

Normal Movement	Permitted/Opposed
Slip/Bypass-Lane Movement	Opposed Slip/Bypass-Lane
Stopped Movement	$\sqrt{\text { durn On Red }}$
Other Movement Class (MC) Running	Undetected Movement
— Mixed Running \& Stopped MCs	\Rightarrow Continuous Movement
\rightleftharpoons Other Movement Class (MC) Stopped	- Phase Transition Applied

Site: 105 [105 SAT EX Princes Hwy \& Ikea Access Road (Site Folder: Existing SAT -

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	A	B	C
Phase Change Time (sec)	23	93	119
Green Time (sec)	64	20	18
Phase Time (sec)	70	26	24
Phase Split	58%	22%	20%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100\%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Other Movement Class (MC) Running

Mixed Running \& Stopped MCs \quad| Permitted/Opposed |
| :--- |
| Other Movement Class (MC) Stopped |

Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 11 August 2022 10:29:55 AM Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

USER REPORT FOR NETWORK SITE

All Movement ClassesProject: 22.256 m 01 v 03 TRAFFIX Bunnings Tempe

Site: 101 [101 SAT EX Princes Hwy, Smith St
\& Union St (Site Folder: Existing SAT Network)]
Intersection: Princes Hwy, Smith St \& Union St
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)
∇ Site: 102 [102 SAT EX Princes Hwy \& Brooklyn St (Site Folder: Existing SAT \square Network: 7 [Ex SAT Network (Network Folder: Existing)] Network)]

Intersection: Princes Hwy \& Brooklyn St
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn			ARR FLO [Tota veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh. veh	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver Speed km/h
East: Princes Highway (NE)													
5 T1	1763	3.2	1763	3.2	0.425	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
Approach	1763	3.2	1763	3.2	0.425	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.6
North: Brooklyn Street (NW)													
7 L2	8	0.0	8	0.0	0.011	7.2	LOS A	0.0	0.3	0.50	0.63	0.50	41.9
Approach	8	0.0	8	0.0	0.011	7.2	LOS A	0.0	0.3	0.50	0.63	0.50	41.9
West: Princes Highway (SW)													
10 L2	4	0.0	4	0.0	0.317	5.0	LOS A	0.0	0.0	0.00	0.00	0.00	57.0
11 T1	1826	1.8	1826	1.8	0.317	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	1831	1.8	1831	1.8	0.317	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.6
All Vehicles	3602	2.5	3602	2.5	0.425	0.0	NA	0.0	0.3	0.00	0.00	0.00	59.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Intersection: Princes Hwy \& Ikea (HV) DW
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	ND VS HV] \%	ARRI FLO [Total veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	CK OF JE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea (HV) DW													
1 L2	1	0.0	1	0.0	0.001	3.6	LOS A	0.0	0.0	0.49	0.40	0.49	23.9
Approach	1	0.0	1	0.0	0.001	3.6	LOS A	0.0	0.0	0.49	0.40	0.49	23.9
East: Princes Highway (NE)													
4 L2	1	0.0	1	0.0	0.306	2.1	LOS A	0.0	0.0	0.00	0.00	0.00	56.7
$5 \quad$ T1	1753	3.2	1753	3.2	0.306	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Approach	1754	3.2	1754	3.2	0.306	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7
West: Princes Highway (SW)													
11 T1	1835	1.8	1835	1.8	0.317	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1835	1.8	1835		0.317	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3589	2.5	3589	2.5	0.317	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
∇ Site: 104 [104 SAT EX Princes Hwy \& Foreman St (Site Folder: Existing SAT Network)]

Intersection: Princes Hwy \& Foreman St
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{aligned} & \text { DEM } \\ & \text { FLO } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	ND IS HV] \%	ARR FLO [Total veh/h	$\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { K OF } \\ & \text { JE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km / h
East: Princes Highway (NE)													
$5 \quad$ T1	1749	2.6	1749	2.6	0.304	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1749	2.6	1749	2.6	0.304	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
North: Foreman Street (NW)													
7 L2	16	6.7	16	6.7	0.273	16.6	LOS B	0.7	5.1	0.90	0.98	0.98	19.7
9 R2	3	0.0	3	0.0	0.273	260.3	LOS F	0.7	5.1	0.90	0.98	0.98	19.7
Approach	19	5.6	19	5.6	0.273	57.2	LOS E	0.7	5.1	0.90	0.98	0.98	19.7
West: Princes Highway (SW)													
11 T1	1872	2.1	1872	2.1	0.324	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Approach	1872	2.1	1872		0.324	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehicles	3640	2.4	3640	2.4	0.324	0.3	NA	0.7	5.1	0.00	0.01	0.01	56.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 105 [105 SAT EX Princes Hwy \& Ikea Access Road (Site Folder: Existing SAT -

마 Network: 7 [Ex SAT Network (Network Folder: Existing)] Network)]

Intersection: Princes Hwy \& Ikea Access Road
Period: SAT Peak Hour
Scenario: Exisitng
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

Timings based on settings in the Network Timing dialog
Phase Times determined by the program
Downstream lane blockage effects included in determining phase times
Phase Sequence: TCS
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Total veh/h	VAL WS HV \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Q1 [Veh. veh	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Ikea Access Road (SE)													
1 L2	203	0.5	203	0.5	0.401	33.4	LOS C	8.5	59.9	0.76	0.76	0.76	17.0
3 R2	311	1.4	311	1.4	* 0.572	55.6	LOS D	9.2	65.3	0.97	0.80	0.97	25.5
Approach	514	1.0	514	1.0	0.572	46.9	LOS D	9.2	65.3	0.89	0.79	0.89	23.5
East: Princes Highway (NE)													
4 L2	414	1.0	414	1.0	0.300	11.0	LOS A	7.9	55.5	0.36	0.66	0.36	46.8
5 T1	1546	2.9	1546	2.9	* 0.559	18.6	LOS B	22.0	157.7	0.69	0.61	0.69	37.6
Approach	1960	2.5	1960	2.5	0.559	17.0	LOS B	22.0	157.7	0.62	0.62	0.62	39.8
West: Princes Highway (SW)													
11 T1	1563	2.5	1563	2.5	0.358	5.1	LOS A	9.9	70.6	0.36	0.32	0.36	53.3
12 R 2	308	0.0	308	0.0	* 0.649	40.0	LOS C	15.4	107.9	0.95	1.00	0.95	21.3
Approach	1872	2.1	1872		0.649	10.8	LOS A	15.4	107.9	0.46	0.43	0.46	46.2
All Vehicles	4345	2.2	4345	2.2	0.649	17.9	LOS B	22.0	157.7	0.58	0.56	0.58	39.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TRAFFIX PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 10 August 2022 4:12:38 PM
Project: T:\Synergy\Projects\22\22.256\Modelling\22.256m01v03 TRAFFIX Bunnings Tempe Feasibility Study.sip9

[^0]: Proposed signalised access to Tempe Bunnings develoment-Concept design road safety audit
 DC Traffic Engineering Pty Ltd -ABN 50148960632

[^1]: Proposed signalised access to Tempe Bunnings develoment-Concept design road safety audit
 DC Traffic Engineering Pty Ltd -ABN 50148960632

[^2]: Proposed signalised access to Tempe Bunnings develoment-Concept design road safety audit
 DC Traffic Engineering Pty Ltd -ABN 50148960632

[^3]: Proposed signalised access to Tempe Bunnings develoment-Concept design road safety audit
 DC Traffic Engineering Pty Ltd -ABN 50148960632

[^4]: Proposed signalised access to Tempe Bunnings develoment-Concept design road safety audit
 DC Traffic Engineering Pty Ltd -ABN 50148960632

[^5]: * Critical Movement (Signal Timing)

